常见深度学习目标检测指标 AP mAP mAP@0.5 mAP@0.5:0.95 简短总结

本文介绍了目标检测中的关键指标,包括准确率与召回率的定义,以及AP(平均精度)和mAP(平均交并比精度)的概念,强调了IOU交并比在评估框相关性的重要性。AP通过PR曲线计算,mAP则是各类别的平均值,考虑了不同IoU阈值下的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测指标计算

准确率 召回率  AP  mAP

1.准确率与召回率

TP 真正例 将正类预测为正类数

FP 假正例 将负类预测为正类数  误检

TN 真负例 将负类预测为负类

FN 假负例 将正类预测为负类     漏检

2.AP

通常情况下 P与R成反比 因此为了更好的衡量模型 引入 AP mAP

AP为PR曲线与坐标轴相交面积

3.IOU交并比

体现框的相关性

两检测框相交与相并之比 ,因此取值范围是(0-1);

4.mAP

mAP 是各类的AP平均值

mAP@0.5: IoU阈值大于0.5下的mAP

mAP@0.5:0.95

表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值