不含一阶导数项的线性二阶微分方程的通解

假设这里有一个线性二阶微分等式,形式如下:

y^{''}+F(\theta)y=f(\theta)           (1)

其中F是连续的,f是在实闭区间是\theta_{0}\leq \theta \leq \theta_{f}连续的,如果有人倾向于推广,在相对假弱的假设下,这个结果能够被发现。如果\varphi_{1},\varphi_{2}是下列其次线性方程的任意两个线性无关的解

y^{''}+F(\theta)y=0                 (2)

于是,关于\varphi_{1},\varphi_{2}的朗斯基行列式被定义为\varphi_{1}\varphi_{2}^{'}-\varphi_{2}\varphi_{1}^{'},很显然是一个常值\theta_{0}\leq \theta \leq \theta_{f},因为

(\varphi_{1}\varphi_{2}^{'}-\varphi_{2}\varphi_{1}^{'})^{'}=\varphi_{1}\varphi_{2}^{''}-\varphi_{2}\varphi_{1}^{''}=-F\varphi_{1}\varphi_{2}+F\varphi_{1}\varphi_{2}=0                     (3)

因为\varphi_{1},\varphi_{2}能够被任意非零的常数乘,它是可能的来归一化这些常值使其满足

\varphi_{1}\varphi_{2}^{'}-\varphi_{2}\varphi_{1}^{'}=1,\theta_{0}\leq\theta\leq\theta_{f}                     (4)

因此,\varphi_{1},\varphi_{2}代表线性方程(2)的线性独立解,并且满足(4)式。

引入一个新的函数,让我们联想到朗斯基行列式,但是与f有关,按如下形式定义:

w(f)=S(\varphi_{1}f)\varphi_{2}-S(\varphi_{2}f)\varphi_{1}           (5)

其中S(\varphi_{1}f)=\int_{\theta_{0}}^{\theta}\varphi_{1}(\tau)f(\tau)\textup{d}\tau,S(\varphi_{2}f)=\int_{\theta_{0}}^{\theta}\varphi_{2}(\tau)f(\tau)\textup{d}\tau

观察得到

\frac{\textup{d}^{2}w(f)}{\textup{d}\theta^{2}}=S(\varphi_{1}f)\varphi_{2}^{''}-S(\varphi_{2}f)\varphi_{1}^{''}+f         (6)

代入(1)式,可以得到w是该线性二阶微分方程的特解,于是,整个问题的解可以写为

y^{*}=c_{1}\varphi_{1}+c_{2}\varphi_{2}+w(f)              (7)

其中c_{1},c_{2}可以是任意的常数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值