写在前面:
DeepSeek 是由国内顶尖AI研究机构深度求索(DeepSeek)发布的大模型。涵盖架构创新(MoE设计)、训练范式(混合预训练)、能力增强(数学推理)等研究方向。它的老东家是做私募量化的幻方量化,国内四大量化之一,国内少有的A100万卡集群厂商。
Deep Seek大模型本地部署可参考小飞此博客:
Deep Seek大模型本地部署+AnythingLLM部署-CSDN博客
一、引言
DeepSeek 是一款具有强大推理能力的大规模语言模型,而 Cherry Studio 是一个功能强大的本地部署客户端。而本地部署限制于和个人电脑配置,无法有效使用deepseek-R1模型。本文将详细介绍如何在 Cherry Studio 平台上部署硅基流动的 DeepSeek 大模型,帮助读者实现高效的本地推理。
二、环境准备
1. 注册硅基流动账号
访问硅基流动官网 r1.siliconflow.cn,点击注册按钮,填写相关信息完成注册。注册成功后,每个账号会赠送一定额度的体验费用。这是小飞的邀请码:7nhvkl9m。(填写邀请码可送14米的对话额度)
2. 获取 API 密钥
登录硅基流动账号后,进入“API 密钥”页面,点击“新建密钥”,填写描述信息后生成密钥,并将其复制保存,后续部署时需要用到。
3. 下载 Cherry Studio 客户端
根据自己的操作系统版本,从 Cherry Studio 官网下载对应的客户端安装包。安装完成后,打开客户端。
三、模型部署
1. 添加 API 密钥
在 Cherry Studio 客户端中,点击“设置”,选择“硅基流动”选项,粘贴之前复制的 API 密钥,然后点击“添加”。
2. 添加 DeepSeek 模型
在硅基流动模型页面找到Deepseek模型并复制:
在 Cherry Studio 的模型列表中,默认可能没有 DeepSeek 模型。点击“添加”按钮,选择 DeepSeek-R1 模型,复制其模型 ID,然后点击“添加模型”。
3. 检查模型状态
添加完模型后,点击“检查”按钮,确保模型已成功添加并可用。此时,你可以在 Cherry Studio 中选择 DeepSeek-R1 模型进行对话。
四、使用与体验
1. 开始对话
在 Cherry Studio 的主界面中,选择 DeepSeek-R1 模型,输入你的问题或指令,点击发送按钮,即可与模型进行对话。你可以体验模型的推理能力,感受其强大的语言生成效果。
2. 数据隐私保护
由于 Cherry Studio 支持本地部署,数据完全在本地运行,不会上传到云端,从而有效保护了用户的隐私和数据安全。
附:
关于DeepSeek LLM模型解读,可参考小飞的此博客
DeepSeek系列论文解读之——DeepSeek LLM Scaling Open-Source Language Models with Longtermism-CSDN博客
关于DeepSeek Janus-Pro-7B多模态模型解读,可参考小飞的此博客
人人可用的视觉理解引擎——DeepSeek Janus-Pro-7B多模态模型深度解读-CSDN博客
关于DeepSeek系列技术路线,可参考小飞的此博客
浅谈DeepSeek系列技术路线_deepseek技术路线-CSDN博客
关于DeepSeek系列论文解读之DeepSeek-R1,可参考小飞的此博客DeepSeek系列论文解读之DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning-CSDN博客
关于本地部署大模型,可参考小飞的此博客Ollama框架结合docker下的open-webui与AnythingLLM构建RAG知识库_anythingllm和open-webui如何结合-CSDN博客