21句话入门机器学习_一句话证明自己学过机器学习,看完不会的来打我

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上运维知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注运维)
img

正文


       加载数据时,如果指定return\_X\_y参数为False(默认值),则可以查看标签的名字。



iris = load_iris()
iris.target_names # 查看标签的名字
array([‘setosa’, ‘versicolor’, ‘virginica’], dtype=‘<U10’)
X = iris.data
y = iris.target


###### 13. 模型训练时,通常会将数据集和标签集分成两部分:一部分用于训练,一部分用于测试。


       分割数据集是一项非常重要的工作,不同的分割方法对于模型训练的结果有不同的影响。 Scikit-learn提供了很多种数据集分割方法,train\_test\_split是其中最简单的一种,可以根据指定的比例随机抽取测试集。train\_test\_split函数位于模型选择子模块model\_selection中。



from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split as tsplit
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.1)
X_train.shape, X_test.shape
((135, 4), (15, 4))
y_train.shape, y_test.shape
((135,), (15,))


       上面的代码按照10%的比例随机从数据集中抽取样本作为测试集,剩余样本作为训练集。分割完成后,训练集有135个样本,测试集有15个样本。


###### 14. 近朱者赤,近墨者黑,距离谁最近,就和谁同类——这就是k-近邻分类。


       k-近邻分类是最简单、最容易的分类方法。对于待分类的样本,从训练集中找出k个和它距离最近的样本,考察这些样本中哪一个标签最多,就给待分类样本贴上该标签。k值的最佳选择高度依赖数据,较大的k值会抑制噪声的影响,但同时也会使分类界限不明显。通常k值选择不大于20的整数。



from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split as tsplit
from sklearn.neighbors import KNeighborsClassifier # 导入k-近邻分类模型
X, y = load_iris(return_X_y=True) # 获取鸢尾花数据集,返回样本集和标签集
X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.1) # 拆分为训练集和测试集
m = KNeighborsClassifier(n_neighbors=10) # 模型实例化,n_neighbors参数指定k值,默认k=5
m.fit(X_train, y_train) # 模型训练
KNeighborsClassifier()
m.predict(X_test) # 对测试集分类
array([2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 0, 1, 0, 0, 2])
y_test # 这是实际的分类情况,上面的预测只错了一个
array([2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 0, 1, 0, 0, 2])
m.score(X_test, y_test) # 模型测试精度(介于0~1)
0.9333333333333333


       应用分类模型对15个测试样本分类,结果只有1个是错误的,准确率约为93%。在分类算法中,score是最常用的评估函数,返回分类正确的样本数与测试样本总数之比。


###### 15. 一辆开了八年的大切诺基可以卖多少钱?最简单的方法是参考k辆同款车型且使用年限相近的二手车售价的均值——这就是k-近邻回归。


       k-近邻算法不仅可以用来解决分类问题,也可以用来解决回归问题。k-近邻回归预测样本的标签由它最近邻标签的均值计算而来。下面的代码以波士顿房价数据集为例,演示了k-近邻回归模型的用法。波士顿房价数据集统计的是20世纪70年代中期波士顿郊区房价的中位数,一共有506条不同的数据,每条数据包含区域的人文环境、自然环境、商业环境、交通状况等13个属性,标签是区域房价的平均值。



from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split as tsplit
from sklearn.neighbors import KNeighborsRegressor
X, y = load_boston(return_X_y=True) # 加载波士顿房价数据集
X.shape, y.shape, y.dtype # 该数据集共有506个样本,13个特征列,标签集为浮点型,适用于回归模型
((506, 13), (506,), dtype(‘float64’))
X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.01) # 拆分为训练集和测试集
m = KNeighborsRegressor(n_neighbors=10) # 模型实例化,n_neighbors参数指定k值,默认k=5
m.fit(X_train, y_train) # 模型训练
KNeighborsRegressor(n_neighbors=10)
m.predict(X_test) # 预测6个测试样本的房价
array([27.15, 31.97, 12.68, 28.52, 20.59, 21.47])
y_test # 这是测试样本的实际价格,除了第2个(索引为1)样本偏差较大,其他样本偏差还算差强人意
array([29.1, 50. , 12.7, 22.8, 20.4, 21.5])


###### 16. 常用的回归模型的评价方法有均方误差、中位数绝对误差和复相关系数等。


       评价一个回归结果的优劣,比评价一个分类结果要困难得多——前者需要考虑偏离程度,而后者只考虑对错。常用的回归评价函数是均方误差函数、中位数绝对误差函数和复相关系数函数等,这几个函数均被包含在模型评估指标子模块metrics中。均方误差和中位数绝对误差越小,说明模型精确度越高;复相关系数则相反,越接近1说明模型精确度越高,越接近0说明模型越不可用。


       以上一段代码为例,模型评估结果如下。



from sklearn import metrics
y_pred = m.predict(X_test)
metrics.mean_squared_error(y_test, y_pred) # 均方误差
60.27319999999995
metrics.median_absolute_error(y_test, y_pred) # 中位数绝对误差
1.0700000000000003
metrics.r2_score(y_test, y_pred) # 复相关系数
0.5612816401629652


复相关系数只有0.56,显然,用k-近邻算法预测波士顿房价不是一个好的选择。下面的代码尝试用决策树算法预测波士顿房价,得到了较好的效果,复相关系数达到0.98,预测房价非常接近实际价格,误差极小。



from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split as tsplit
from sklearn.tree import DecisionTreeRegressor
X, y = load_boston(return_X_y=True) # 加载波士顿房价数据集
X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.01) # 拆分为训练集和测试集
m = DecisionTreeRegressor(max_depth=10) # 实例化模型,决策树深度为10
m.fit(X, y) # 训练
DecisionTreeRegressor(max_depth=10)
y_pred = m.predict(X_test) # 预测
y_test # 这是测试样本的实际价格,除了第2个(索引为1)样本偏差略大,其他样本偏差较小
array([20.4, 21.9, 13.8, 22.4, 13.1, 7. ])
y_pred # 这是6个测试样本的预测房价,非常接近实际价格
array([20.14, 22.33, 14.34, 22.4, 14.62, 7. ])
metrics.r2_score(y_test, y_pred) # 复相关系数
0.9848774474870712
metrics.mean_squared_error(y_test, y_pred) # 均方误差
0.4744784865112032
metrics.median_absolute_error(y_test, y_pred) # 中位数绝对误差
0.3462962962962983


###### 17. 决策树、支持向量机(SVM)、贝叶斯等算法,既可以解决分类问题,也可以解决回归问题。


       应用这些算法解决分类和回归问题的流程,与使用k-近邻算法基本相同,不同之处在于不同的算法提供了不同的参数。我们需要仔细阅读算法文档,搞清楚这些参数的含义,选择正确的参数,才有可能得到正确的结果。比如,支持向量机(SVM)的回归模型参数中,比较重要的有kernel参数和C参数。kernel参数用来选择内核算法;C是误差项的惩罚参数,取值一般为10的整数次幂,如 0.001、0.1、1000 等。通常,C值越大,对误差项的惩罚越大,因此训练集测试时准确率就越高,但泛化能力越弱;C值越小,对误差项的惩罚越小,因此容错能力越强,泛化能力也相对越强。


       下面的例子以糖尿病数据集为例,演示了支持向量机(SVM)回归模型中不同的C参数对回归结果的影响。糖尿病数据集收集了442 例糖尿病患者的10 个指标(年龄、性别、体重指数、平均血压和6 个血清测量值),标签是一年后疾病进展的定量测值。需要特别指出,糖尿病数据集并不适用于SVM算法,此处仅是为了演示参数选择如何影响训练结果。



from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split as tsplit
from sklearn.svm import SVR
from sklearn import metrics
X, y = load_diabetes(return_X_y=True)
X.shape, y.shape, y.dtype
((442, 10), (442,), dtype(‘float64’))
X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.02)
svr_1 = SVR(kernel=‘rbf’, C=0.1) # 实例化SVR模型,rbf核函数,C=0.1
svr_2 = SVR(kernel=‘rbf’, C=100) # 实例化SVR模型,rbf核函数,C=100
svr_1.fit(X_train, y_train) # 模型训练
SVR(C=0.1)
svr_2.fit(X_train, y_train) # 模型训练
SVR(C=100)
z_1 = svr_1.predict(X_test) # 模型预测
z_2 = svr_2.predict(X_test) # 模型预测
y_test # 这是测试集的实际值
array([ 49., 317., 84., 181., 281., 198., 84., 52., 129.])
z_1 # 这是C=0.1的预测值,偏差很大
array([138.10720127, 142.1545034 , 141.25165838, 142.28652449,
143.19648143, 143.24670732, 137.57932272, 140.51891989,
143.24486911])
z_2 # 这是C=100的预测值,偏差明显变小
array([ 54.38891948, 264.1433666 , 169.71195204, 177.28782561,
283.65199575, 196.53405477, 61.31486045, 199.30275061,
184.94923477])
metrics.mean_squared_error(y_test, z_1) # C=0.01的均方误差
8464.946517460194
metrics.mean_squared_error(y_test, z_2) # C=100的均方误差
3948.37754995066
metrics.r2_score(y_test, z_1) # C=0.01的复相关系数
0.013199351909129464
metrics.r2_score(y_test, z_2) # C=100的复相关系数
0.5397181166871942
metrics.median_absolute_error(y_test, z_1) # C=0.01的中位数绝对误差
57.25165837797314
metrics.median_absolute_error(y_test, z_2) # C=100的中位数绝对误差
22.68513954888364


###### 18. 随机森林是将多棵分类决策树或者回归决策树集成在一起的算法,是机器学习的一个分支——集成学习的方法。


       以随机森林分类为例,随机森林包含的每棵决策树都是一个分类模型,对于一个输入样本,每个分类模型都会产生一个分类结果,类似投票表决。随机森林集成了所有的投票分类结果,并将被投票次数最多的类别指定为最终的输出类别。随机森林每棵决策树的训练样本都是随机的,决策树中训练集的特征列也是随机选择确定的。正是因为这两个随机性的存在,使得随机森林不容易陷入过拟合,并且具有很好的抗噪能力。


       考虑到随机森林的每一棵决策树中训练集的特征列是随机选择确定的,更适合处理具有多特征列的数据,这里选择 Scikit-learn内置的威斯康星州乳腺癌数据集来演示随机森林分类模型的使用。该数据集有 569 个乳腺癌样本,每个样本包含半径、纹理、周长、面积、是否平滑、是否紧凑、是否凹凸等 30 个特征列。



from sklearn.datasets import load_breast_cancer # 导入数据加载函数
from sklearn.tree import DecisionTreeClassifier # 导入随机树
from sklearn.ensemble import RandomForestClassifier # 导入随机森林
from sklearn.model_selection import cross_val_score # 导入交叉验证
ds = load_breast_cancer() # 加载威斯康星州乳腺癌数据集
ds.data.shape # 569个乳腺癌样本,每个样本包含30个特征
(569, 30)
dtc = DecisionTreeClassifier() # 实例化决策树分类模型
rfc = RandomForestClassifier() # 实例化随机森林分类模型
dtc_scroe = cross_val_score(dtc, ds.data, ds.target, cv=10) # 交叉验证
dtc_scroe # 决策树分类模型交叉验证10次的结果
array([0.92982456, 0.85964912, 0.92982456, 0.89473684, 0.92982456,
0.89473684, 0.87719298, 0.94736842, 0.92982456, 0.92857143])
dtc_scroe.mean() # 决策树分类模型交叉验证10次的平均精度
0.9121553884711779
rfc_scroe = cross_val_score(rfc, ds.data, ds.target, cv=10) # 交叉验证
rfc_scroe # 随机森林分类模型交叉验证10次的结果
array([0.98245614, 0.89473684, 0.94736842, 0.94736842, 0.98245614,
0.98245614, 0.94736842, 0.98245614, 0.94736842, 1. ])
rfc_scroe.mean()# 随机森林分类模型交叉验证10次的平均精度
0.9614035087719298


       上面的代码使用了交叉验证法,其原理是将样本分成n份,每次用其中的n-1份作训练集,剩余1份作测试集,训练n次,返回每次的训练结果。结果显示,同样交叉验证10次,96%对91%,随机森林的分类准确率明显高于随机树。


###### 19. 基于质心的聚类,无论是k均值聚类还是均值漂移聚类,其局限性都是显而易见的:无法处理细长条、环形或者交叉的不规则的样本分布。


       k均值(k-means)聚类通常被视为聚类的“入门算法”,其算法原理非常简单。首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为止:第一步将每个样本分配到距离最近的质心,第二步根据每个质心所有样本的平均值来创建新的质心。


       基于质心的聚类是通过把样本分离成多个具有相同方差的类的方式来聚集数据的,因此总是希望簇是凸(convex)的和各向同性(isotropic)的,但这并非总是能够得到满足。例如,对细长、环形或交叉等具有不规则形状的簇,其聚类效果不佳。



from sklearn import datasets as dss # 导入样本生成器
from sklearn.cluster import KMeans # 从聚类子模块导入聚类模型
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘FangSong’]
plt.rcParams[‘axes.unicode_minus’] = False
X_blob, y_blob = dss.make_blobs(n_samples=[300,400,300], n_features=2)
X_circle, y_circle = dss.make_circles(n_samples=1000, noise=0.05, factor=0.5)
X_moon, y_moon = dss.make_moons(n_samples=1000, noise=0.05)
y_blob_pred = KMeans(init=‘k-means++’, n_clusters=3).fit_predict(X_blob)
y_circle_pred = KMeans(init=‘k-means++’, n_clusters=2).fit_predict(X_circle)
y_moon_pred = KMeans(init=‘k-means++’, n_clusters=2).fit_predict(X_moon)
plt.subplot(131)
<matplotlib.axes._subplots.AxesSubplot object at 0x00000180AFDECB88>
plt.title(‘团状簇’)
Text(0.5, 1.0, ‘团状簇’)
plt.scatter(X_blob[:,0], X_blob[:,1], c=y_blob_pred)
<matplotlib.collections.PathCollection object at 0x00000180C495DF08>
plt.subplot(132)
<matplotlib.axes._subplots.AxesSubplot object at 0x00000180C493FA08>
plt.title(‘环状簇’)
Text(0.5, 1.0, ‘环状簇’)
plt.scatter(X_circle[:,0], X_circle[:,1], c=y_circle_pred)
<matplotlib.collections.PathCollection object at 0x00000180C499B888>
plt.subplot(133)
<matplotlib.axes._subplots.AxesSubplot object at 0x00000180C4981188>
plt.title(‘新月簇’)
Text(0.5, 1.0, ‘新月簇’)
plt.scatter(X_moon[:,0], X_moon[:,1], c=y_moon_pred)
<matplotlib.collections.PathCollection object at 0x00000180C49DD1C8>
plt.show()


       上面的代码首先使用样本生成器生成团状簇、环状簇和新月簇,然后使用k均值聚类分别对其实施聚类操作。结果表明,k均值聚类仅适用于团状簇,对于环状簇、新月簇无能为力。聚类的最终效果如下图所示。


![在这里插入图片描述](https://img-blog.csdnimg.cn/20210526112938296.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3h1Zml2ZQ==,size_16,color_FFFFFF,t_70#pic_center)  
   



###### 20. 基于密度的空间聚类具有更好的适应性,可以发现任何形状的簇。


       基于密度的空间聚类,全称是基于密度的带噪声的空间聚类应用算法(英文简写为DBSCAN)。该聚类算法将簇视为被低密度区域分隔的高密度区域,这与K均值聚类假设簇总是凸的这一条件完全不同,因此可以发现任何形状的簇。


       DBSCAN类是Scikit-learn聚类子模块cluster提供的基于密度的空间聚类算法,该类有两个重要参数eps和min\_samples。要理解DBSCAN 类的参数,需要先理解核心样本。如果一个样本的eps距离范围内存在不少于min\_sample个样本(包括这个样本),则该样本称为核心样本。可见,参数eps和min\_samples 定义了簇的稠密度。



from sklearn import datasets as dss
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘FangSong’]
plt.rcParams[‘axes.unicode_minus’] = False
X, y = dss.make_moons(n_samples=1000, noise=0.05)
dbs_1 = DBSCAN() # 默认核心样本半径0.5,核心样本邻居5个
dbs_2 = DBSCAN(eps=0.2) # 核心样本半径0.2,核心样本邻居5个
dbs_3 = DBSCAN(eps=0.1) # 核心样本半径0.1,核心样本邻居5个
dbs_1.fit(X)
DBSCAN(algorithm=‘auto’, eps=0.5, leaf_size=30, metric=‘euclidean’,
metric_params=None, min_samples=5, n_jobs=None, p=None)
dbs_2.fit(X)
DBSCAN(algorithm=‘auto’, eps=0.2, leaf_size=30, metric=‘euclidean’,
metric_params=None, min_samples=5, n_jobs=None, p=None)
dbs_3.fit(X)
DBSCAN(algorithm=‘auto’, eps=0.1, leaf_size=30, metric=‘euclidean’,
metric_params=None, min_samples=5, n_jobs=None, p=None)
plt.subplot(131)
<matplotlib.axes.subplots.AxesSubplot object at 0x00000180C4C5D708>
plt.title(‘eps=0.5’)
Text(0.5, 1.0, ‘eps=0.5’)
plt.scatter(X[:,0], X[:,1], c=dbs_1.labels
)
<matplotlib.collections.PathCollection object at 0x00000180C4C46348>
plt.subplot(132)
<matplotlib.axes.subplots.AxesSubplot object at 0x00000180C4C462C8>
plt.title(‘eps=0.2’)
Text(0.5, 1.0, ‘eps=0.2’)
plt.scatter(X[:,0], X[:,1], c=dbs_2.labels
)
<matplotlib.collections.PathCollection object at 0x00000180C49FC8C8>
plt.subplot(133)
<matplotlib.axes.subplots.AxesSubplot object at 0x00000180C49FCC08>
plt.title(‘eps=0.1’)
Text(0.5, 1.0, ‘eps=0.1’)
plt.scatter(X[:,0], X[:,1], c=dbs_3.labels
)
<matplotlib.collections.PathCollection object at 0x00000180C49FC4C8>
plt.show()


       以上代码使用DBSCAN,配合适当的参数,最终将新月数据集的上弦月和下弦月分开,效果如下图所示。


![在这里插入图片描述](https://img-blog.csdnimg.cn/20210526113856917.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3h1Zml2ZQ==,size_16,color_FFFFFF,t_70#pic_center)  
   



###### 21. 主成分分析(PCA)是一种统计方法,也是最常用的降维方法。



### 最后的话

最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!

### 资料预览

给大家整理的视频资料:

![](https://img-blog.csdnimg.cn/img_convert/8c1e6dba22a131e933203e0ffd9d6880.png)

给大家整理的电子书资料:

  

![](https://img-blog.csdnimg.cn/img_convert/c55e07e09f951419d24432fee707cdaf.png)



**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**


**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注运维)**
![img](https://img-blog.csdnimg.cn/img_convert/6ef35b928e9da6e845f412b6f8c63404.jpeg)

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
3XeV-1713293602443)]

给大家整理的电子书资料:

  

[外链图片转存中...(img-TregBnp7-1713293602443)]



**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**


**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注运维)**
[外链图片转存中...(img-tflItORs-1713293602443)]

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值