自然语言处理-文本分类

1 实验介绍

1.1 关于本实验

本实验重点介绍了朴素贝叶斯和支持向量机两种机器学习方法。关于朴素贝叶斯,介绍了贝叶斯定理、三种贝叶斯分类方法,使用朴素贝叶斯进行新闻分类。关于支持向量机,介绍支持向量机的原理,了解三种核函数一线性核函数、多项式核函数和高斯核函数。使用支持向量机对鸢尾花的分类。最后介绍了垃圾邮件的文本分类的两种实现方式。

1.2 实验目的

了解文本分类的研究历史;理解朴素贝叶斯分类和支持向量机分类原理;掌握朴素贝叶斯分类和支持向量机分类的应用。

2 朴素贝叶斯

朴素贝叶斯在Sklearn库中使用sklearn.naive_bayes模块实现,具有高斯分布、多项式分布和伯努利分布3种贝叶斯分类方法,分别使用GaussianNB、MultinomialNB和BernoulliNB函数实现。

2.1 GaussianNB方法

高斯分布朴素贝叶斯,适合样本特征分布是连续值的特点,GaussianNB语法形式如下。

GaussianNB(priors=True)

GaussianNB类的主要参数仅有一个,即先验概率priors。

【任务1】GaussianNB举例

import numpy as np  
from sklearn.datasets import make_blobs
from sklearn.naive_bayes import GaussianNB  
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
X, y = make_blobs(n_samples=500, centers=5,random_state=8)
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=8)

gnb = GaussianNB()
gnb.fit(X_train, y_train)
print('模型得分:{:.3f}'.format(gnb.score(X_test, y_test)))

x_min, x_max = X[:,0].min()-0.5, X[:,0].max()+0.5
y_min, y_max = X[:,1].min()-0.5, X[:,1].max()+0.5
xx,yy = np.meshgrid(np.arange(x_min, x_max,.02),np.arange(y_min, y_max, .02))
z = gnb.predict(np.c_[(xx.ravel(),yy.ravel())]).reshape(xx.shape)
plt.pcolormesh(xx,yy,z,cmap=plt.cm.Pastel1)
plt.scatter(X_train[:,0],X_train[:,1],c=y_train,cmap=plt.cm.cool,edgecolor='k')
plt.scatter(X_test[:,0],X_test[:,1],c=y_test,cmap=plt.cm.cool,marker='*', edgecolor='k')
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
plt.title('Classifier: GaussianNB')
plt.show()

程序运行结果如下:

模型得分:0.968

在这里插入图片描述

2.2 MultinomialNB方法

多项式分布朴素贝叶斯适合非负离散数值特征的分类情况,用于描述特征次数或者特征次数比例的问题。MultinomialNB语法形式如下。MultinomialNB(alpha=1.0,fit_prior=True,class_prior=None)

MultinomialNB参数比GaussianNB多,3个参数含义如下。

(1)alpha:先验平滑因子,默认等于1,当等于1时表示拉普拉斯平滑。

(2)fit_prior:是否去学习类的先验概率,默认是True。

(3)class_prior:各个类别的先验概率。

【任务2】MultinomialNB举例

import numpy as np
import  matplotlib.pyplot as plt
from sklearn import datasets,naive_bayes
from sklearn.model_selection import train_test_split

def load_data():
    digits=datasets.load_digits()     #加载scikit-learn自带的digits数据集
    return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target)
#多项式贝叶斯分类器MultinomialNB模型
def test_MultinomialNB(*data):
    X_train,X_test,y_train,y_test=data
    cls=naive_bayes.MultinomialNB()
    cls.fit(X_train,y_train)
    print('Training Score: %.2f' % cls.score(X_train,y_train))
    print('Testing Score: %.2f' % cls.score(X_test, y_test))
    
# 产生用于分类问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_GaussianNB    
test_MultinomialNB(X_train,X_test,y_train,y_test)

# 测试 MultinomialNB 的预测性能随 alpha 参数的影响
def test_MultinomialNB_alpha(*data):
    X_train,X_test,y_train,y_test=data
    alphas=np.logspace(-2,5,num=200)
    train_scores=[]
    test_scores=[]
    for alpha in alphas:
        cls=naive_bayes.MultinomialNB(alpha=alpha)
        cls.fit(X_train,y_train)
        train_scores.append(cls.score(X_train,y_train))
        test_scores.append(cls.score(X_test, y_test))
    # 绘图
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.plot(alphas,train_scores,label="Training Score")
    ax.plot(alphas,test_scores,label="Testing Score")
    ax.set_xlabel(r"$\alpha$")
    ax.set_ylabel("score")
    ax.set_ylim(0,1.0)
    ax.set_title("MultinomialNB")
    ax.set_xscale("log")
    plt.show()
# 调用 test_MultinomialNB_alpha    
test_MultinomialNB_alpha(X_train,X_test,y_train,y_test)

程序运行结果如下:

Training Score: 0.91
Testing Score: 0.90

在这里插入图片描述

2.3 BernoulliNB方法

伯努利分布朴素贝叶斯又名“两点分布”“二项分布”或“0一1分布”,适合二元离散值或者很稀疏的多元离散值情况。BernoulliNB语法形式如下所示。

BernoulliNB(alpha=1.0,binarize=0.0,fit_prior=True,class_prior=None)

参数说明如下。

(1)alpha:平滑因子,与多项式中的alpha一致。

(2)fit_prior:是否去学习类的先验概率,默认是True。

(3)class_prior:各个类别的先验概率,与多项式中的class_prior一致。

(4)binarize:样本特征二值化的阙值,默认是0。如果不输入,模型认为所有特征都已经二值化;如果输入具体的值,模型把大于该值的归为一类,小于的归为另一类。

【任务3】BernoulliNB举例

import numpy as np  
from sklearn.naive_bayes import BernoulliNB
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
X, y = make_blobs(n_samples=500, centers=5,random_state=8)
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=8)
nb = BernoulliNB()
nb.fit(X_train,y_train)
print('模型得分:{:.3f}'.format(nb.score(X_test, y_test)))
import matplotlib.pyplot as plt
x_min, x_max = X[:,0].min()-0.5, X[:,0].max()+0.5
y_min, y_max = X[:,1].min()-0.5, X[:,1].max()+0.5
xx,yy = np.meshgrid(np.arange(x_min, x_max,.02),np.arange(y_min, y_max, .02))

z = nb.predict(np.c_[(xx.ravel(),yy.ravel())]).reshape(xx.shape)
plt.pcolormesh(xx,yy,z,cmap=plt.cm.Pastel1)
plt.scatter(X_train[:,0],X_train[:,1],c=y_train,cmap=plt.cm.cool,edgecolor='k')
plt.scatter(X_test[:,0],X_test[:,1],c=y_test,cmap=plt.cm.cool,marker='*',edgecolor='k')
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
plt.title('Classifier: BernoulliNB')
plt.show()

程序运行结果如下:

模型得分:0.544

在这里插入图片描述

2.4 朴素贝叶斯进行新闻分类

新闻分类数据来源于Sklearn的20 newsgroups数据集,属于非负离散数值,适合于用多项式分布朴素贝叶斯进行分类。

【任务4】MultinomialNB应用于20newsgroups数据集

from sklearn.datasets import fetch_20newsgroups 
from sklearn.model_selection import  train_test_split
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.naive_bayes import MultinomialNB   #多项式朴素贝叶斯模型
from sklearn.metrics import classification_report
# 步骤1.数据获取
news = fetch_20newsgroups(subset='all')
print('输出数据的条数:',len(news.data))                # 输出数据的条数:18846
#步骤2.数据预处理
#分割训练集和测试集,随机采样25%的数据样本作为测试集
X_train,X_test,y_train,y_test= train_test_split(news.data,news.target,test_size=0.25,random_state=33)
#文本特征向量化
vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
#步骤3.使用多项式朴素贝叶斯进行训练
mnb = MultinomialNB()   
mnb.fit(X_train,y_train)    # 利用训练数据对模型参数进行估计
y_predict = mnb.predict(X_test)     # 对参数进行预测
#步骤4.获取结果报告
print('准确率:', mnb.score(X_test,y_test))
print(classification_report(y_test, y_predict, target_names = news.target_names))

程序运行结果如下:

输出数据的条数: 18846
准确率: 0.8397707979626485
precision recall f1-score support

​ alt.atheism 0.86 0.86 0.86 201
​ comp.graphics 0.59 0.86 0.70 250
comp.os.ms-windows.misc 0.89 0.10 0.17 248
comp.sys.ibm.pc.hardware 0.60 0.88 0.72 240
comp.sys.mac.hardware 0.93 0.78 0.85 242
​ comp.windows.x 0.82 0.84 0.83 263
​ misc.forsale 0.91 0.70 0.79 257
​ rec.autos 0.89 0.89 0.89 238
​ rec.motorcycles 0.98 0.92 0.95 276
​ rec.sport.baseball 0.98 0.91 0.95 251
​ rec.sport.hockey 0.93 0.99 0.96 233
​ sci.crypt 0.86 0.98 0.91 238
​ sci.electronics 0.85 0.88 0.86 249
​ sci.med 0.92 0.94 0.93 245
​ sci.space 0.89 0.96 0.92 221
soc.religion.christian 0.78 0.96 0.86 232
​ talk.politics.guns 0.88 0.96 0.92 251
talk.politics.mideast 0.90 0.98 0.94 231
​ talk.politics.misc 0.79 0.89 0.84 188
​ talk.religion.misc 0.93 0.44 0.60 158

​ accuracy 0.84 4712
​ macro avg 0.86 0.84 0.82 4712
​ weighted avg 0.86 0.84 0.82 4712

3 支持向量机

SVC具体语法如下。

SVC(kernel=‘RBF’)

核函数kernel有RBF(高斯核函数)、Linear(线性核函数)、Poly(多项式核函数)。

3.1 线性核函数

线性核函数是指不通过核函数进行维度提升,仅在原始维度空间中寻求线性分类边界。kernel取值为linear,语法形式如下所示。

SVC(kernel =‘linear’,C)

C:惩罚系数,用来控制损失函数的惩罚系数。C越大,相当于惩罚松弛变量,松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样会出现训练集测试时准确率很高,但泛化能力弱,容易导致过拟合。C值小,对误分类的惩罚减小,容错能力增强,泛化能力较强,但也可能导致欠拟合。

【任务5】线性核函数举例

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
# 先创建50个数据点,让它们分为两类
X, y = make_blobs(n_samples=50, centers=2, random_state=6)
# 创建一个线性内核的支持向量机模型
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)
# 把数据点画出来
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
#建立图像坐标
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)
# 把分类的决定边界画出来
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none')
plt.show()

程序运行结果如下:

在这里插入图片描述

3.2 多项式核函数

多项式核函数是指通过多项式函数增加原始样本特征的高次方幂,把样本特征进行乘方投射到高维空间。kernel参数取值为ploy,语法形式如下所示。

SVC(kernel =‘ploy’,degree=3)

degree:表示多项式的最高次数,默认为三次多项式。

【任务5】区分颜色点

圆点是正类,三角是负类,五星是预测样本点。

# -*- coding:utf-8 -*-
from sklearn.svm import SVC
import numpy as np
X=np.array([[1,1],[1,2],[1,3],[1,4],[2,1],[2,2],[3,1],[4,1],[5,1],[5,2],[6,1],[6,2],[6,3],[6,4],[3,3],[3,4],[3,5],[4,3],[4,4],[4,5]])
Y=np.array([1]*14+[-1]*6)
T=np.array([[0.5,0.5],[1.5,1.5],[3.5,3.5],[4,5.5]])

#X为训练样本,Y为训练样本标签(1和-1),T为测试样本
svc=SVC(kernel='poly',degree=2,gamma=1,coef0=0)
svc.fit(X,Y)
pre=svc.predict(T)
print("预测结果\n",pre)     #输出预测结果
print("正类和负类支持向量总个数\n",svc.n_support_)   #输出正类和负类支持向量总个数
print("正类和负类支持向量索引\n",svc.support_)    #输出正类和负类支持向量索引
print("正类和负类支持向量\n",svc.support_vectors_)  #输出正类和负类支持向量

程序运行结果如下:

预测结果
[ 1 1 -1 -1]
正类和负类支持向量总个数
[2 3]
正类和负类支持向量索引
[14 17 3 5 13]
正类和负类支持向量
[[3. 3.]
[4. 3.]
[1. 4.]
[2. 2.]
[6. 4.]]

3.3 高斯核函数

高斯核函数也叫作径向基函数,是通过高斯分布函数衡量样本和样本之间的“相似度”进而线性可分。kernel参数取值为rbf,语法形式如下所示。

SVC (kernel=‘rbf’,C)

【任务6】高斯核函数举例

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

# 先创建50个数据点,让它们分为两类
X, y = make_blobs(n_samples=50, centers=2, random_state=6)

# 创建一个RBF内核的支持向量机模型
clf_rbf = svm.SVC(kernel='rbf', C=1000)
clf_rbf.fit(X, y)
# 把数据点画出来
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)

#建立图像坐标
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf_rbf.decision_function(xy).reshape(XX.shape)

# 把分类的决定边界画出来
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,linestyles=['--', '-', '--'])
ax.scatter(clf_rbf.support_vectors_[:, 0], clf_rbf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none')
plt.show()

程序运行结果如下:

在这里插入图片描述

4 支持向量机对鸢尾花分类

【任务7】支持向量机对鸢尾花分类

from sklearn import datasets
import sklearn.model_selection as ms
import sklearn.svm as svm
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report

iris = datasets.load_iris() 
x = iris.data[:,:2]
y = iris.target
 
# 数据集分为训练集和测试集
train_x, test_x, train_y, test_y = ms.train_test_split(x, y, test_size=0.25, random_state=5)
# 基于线性核函数
model = svm.SVC(kernel='linear')
model.fit(train_x, train_y)

#基于多项式核函数,三阶多项式核函数
# model = svm.SVC(kernel='poly', degree=3)
# model.fit(train_x, train_y)
# 基于径向基(高斯)核函数
#model = svm.SVC(kernel='rbf', C=600)
#model.fit(train_x, train_y)
# 预测
pred_test_y = model.predict(test_x)
# 计算模型精度
bg = classification_report(test_y, pred_test_y)
print('基于线性核函数 的分类报告:', bg, sep='\n')
#print('基于多项式核函数 的分类报告:', bg, sep='\n')
#print('基于径向基(高斯)核函数 的分类报告:', bg, sep='\n')
# 绘制分类边界线
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
bg_x = np.column_stack((grid_x.ravel(), grid_y.ravel()))
bg_y = model.predict(bg_x)
grid_z = bg_y.reshape(grid_x.shape)
# 画图显示样本数据
plt.title('kernel=linear ', fontsize=16)
#plt.title('kernel=poly ', fontsize=16)
#plt.title('kernel=rbf', fontsize=16)

plt.xlabel('X', fontsize=14)
plt.ylabel('Y', fontsize=14)
plt.tick_params(labelsize=10)
plt.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
plt.scatter(test_x[:, 0], test_x[:, 1], s=80, c=test_y, cmap='jet', label='Samples')

plt.legend()
plt.show()

程序运行结果如下:

基于线性核函数 的分类报告:
precision recall f1-score support

​ 0 1.00 1.00 1.00 12
​ 1 0.75 0.86 0.80 14
​ 2 0.80 0.67 0.73 12

​ accuracy 0.84 38
macro avg 0.85 0.84 0.84 38
weighted avg 0.84 0.84 0.84 38

在这里插入图片描述

5 垃圾邮件分类

朴素贝叶斯算法在垃圾邮件过滤中,应用极其广泛,下面采用朴素贝叶斯定理方法实现。

5.1 朴素贝叶斯定理实现

【任务8】朴素贝叶斯实现垃圾邮件分类举例

代码如下:

# coding=UTF-8
from numpy import *
import matplotlib.pyplot as plt  
import time  
import math
import re
 
def loadTrainDataSet(): #读取训练集
    fileIn = open('./testSet.txt') 
    postingList=[]   #邮件表,二维数组
    classVec=[]
    i=0
    for line in fileIn.readlines():
        lineArr = line.strip().split()
        temp=[]
        for i in range(len(lineArr)):
            if i==0:
                classVec.append(int(lineArr[i]))
            else:
                temp.append(lineArr[i])
        postingList.append(temp)
        i=i+1
    return postingList,classVec
 
def createVocabList(dataSet):  #创建词典
    vocabSet = set([])  #定义list型的集合
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)
 
def setOfWords2Vec(vocabList,inputSet):  #每一个训练样本的特征向量
    returnVec= [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            pass
            #print("\'%s\' 不存在于词典中"%word)
    return returnVec
 
def createTrainMatrix(vocabList,postingList):  #生成训练矩阵
    trainMatrix=[]   
    for i in range(len(postingList)):
        curVec=setOfWords2Vec(vocabList,postingList[i])
        trainMatrix.append(curVec)
    return trainMatrix
 
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)  #样本数量
    numWords = len(trainMatrix[0])  #样本特征数
    pAbusive = sum(trainCategory)/float(numTrainDocs) #p(y=1)
    #分子赋值为1,分母赋值为2(拉普拉斯平滑)
    p0Num=ones(numWords);   #初始化向量,代表所有0类样本中词j出现次数 
    p1Num=ones(numWords);   #初始化向量,代表所有1类样本中词j出现次数
    p0Denom=p1Denom=2.0  #代表0类1类样本的总词数
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num+=trainMatrix[i]
            p1Denom+=sum(trainMatrix[i])
        else:
            p0Num+=trainMatrix[i]
            p0Denom+=sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom  #概率向量(p(x0=1|y=1),p(x1=1|y=1),...p(xn=1|y=1))
    p0Vect = p0Num/p0Denom  #概率向量(p(x0=1|y=0),p(x1=1|y=0),...p(xn=1|y=0))
    #取对数,之后的乘法就可以改为加法,防止数值下溢损失精度
    p1Vect=log(p1Vect) 
    p0Vect=log(p0Vect)
    return p0Vect,p1Vect,pAbusive
 
def classifyNB(vocabList,testEntry,p0Vec,p1Vec,pClass1):  #朴素贝叶斯分类
    #先将输入文本处理成特征向量
    regEx = re.compile('\\W*') #正则匹配分割,以字母数字的任何字符为分隔符
    testArr=regEx.split(testEntry)
    testVec=array(setOfWords2Vec(vocabList,testArr))

    #  此处的乘法并非矩阵乘法,而是矩阵相同位置的2个数分别相乘
    #矩阵乘法应当 dot(A,B) 或者 A.dot(B)
    # 原式子取对数,因此原本的连乘变为连加
    p1=sum(testVec*p1Vec)+log(pClass1)
    p0=sum(testVec*p0Vec)+log(1.0-pClass1)
    # 比较大小
    if p1>p0:
        return 1
    else:
        return 0
 
#测试方法
def testingNB():
    postingList,classVec=loadTrainDataSet()
    vocabList=createVocabList(postingList)
    trainMatrix=createTrainMatrix(vocabList,postingList)
    p0V,p1V,pAb=trainNB0(trainMatrix,classVec)
    #输入测试文本,单词必须用空格分开
    testEntry=input()
    print('测试文本为: '+testEntry)
    if classifyNB(vocabList,testEntry,p0V,p1V,pAb):
        print("--------侮辱性邮件--------")
    else:
        print("--------正常邮件--------")
 
testingNB()

程序运行代码如下:

fuck you
测试文本为: fuck you
--------侮辱性邮件--------

5.2 sklearn朴素贝叶斯实现

代码如下:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd

# 步骤1. 读取数据
spam_file = r"./spam.csv"
to_drop=['Unnamed: 2','Unnamed: 3','Unnamed: 4']
df = pd.read_csv(spam_file, engine='python')
df.drop(columns=to_drop,inplace=True)
df['encoded_label']=df.v1.map({'spam':0,'ham':1})
print(df.head())
# 步骤2. 语料数据划分训练集和测试集 
train_data, test_data, train_label, test_label = train_test_split(
df.v2,df.encoded_label,test_size=0.7,random_state=0)    
# df.v2是邮件内容,df.v1是邮件标签(ham和spam)

#步骤3. 进行无量纲化,使用CountVectorizer将句子转化为向量
c_v = CountVectorizer(decode_error='ignore')
train_data = c_v.fit_transform(train_data)
test_data = c_v.transform(test_data)

# plt.matshow(train_data.toarray())
# plt.show()

#步骤4. 采用朴素贝叶斯算法训练预测
from sklearn import naive_bayes as nb
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix

clf=nb.MultinomialNB()
model=clf.fit(train_data, train_label)

#步骤5. 模型评估
predicted_label=model.predict(test_data)
print("train score:", clf.score(train_data, train_label))
print("test score:", clf.score(test_data, test_label))
print("Classifier Accuracy:",accuracy_score(test_label, predicted_label))
print("Classifier Report:\n",classification_report(test_label, predicted_label))
print("Confusion Matrix:\n",confusion_matrix(test_label, predicted_label))

程序运行代码如下:

​ v1 v2 encoded_label
0 ham Go until jurong point, crazy… Available only … 1
1 ham Ok lar… Joking wif u oni… 1
2 spam Free entry in 2 a wkly comp to win FA Cup fina… 0
3 ham U dun say so early hor… U c already then say… 1
4 ham Nah I don’t think he goes to usf, he lives aro… 1
train score: 0.9934171154997008
test score: 0.9792360933094079
Classifier Accuracy: 0.9792360933094079
Classifier Report:
​ precision recall f1-score support

​ 0 0.97 0.87 0.92 532
​ 1 0.98 1.00 0.99 3369

​ accuracy 0.98 3901
macro avg 0.98 0.93 0.95 3901
weighted avg 0.98 0.98 0.98 3901

Confusion Matrix:
[[ 463 69]
[ 12 3357]]

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值