AFM工作原理

本文介绍了原子力显微镜(AFM)的基本工作原理,通过激光检测法获取样品表面形貌的三维信息。当探针尖端与样品表面原子间存在微弱力时,微悬臂会弯曲,通过监测反射光束偏移来探测样品表面的细节。科学指南针检测平台提供了AFM测试服务,并分享了相关知识,以帮助科研人员更好地理解和使用AFM技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做原子力显微镜AFM测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对AFM测试不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;

 

将一个对微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。

 

图1AFM工作原理示意图

 

下面,我们以激光检测原子力显微镜/AFM(AtomicForceMicroscopeEmployingLaserBeamDeflectionforForceDetection,Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。如图1所示,二极管激光器发出的激光束经过光学系统聚焦在微悬臂背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器上。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。

 

以上就是科学指南针检测平台对网络上相关资料的整理如有测试需求,可以和科学指南针联系,我们会给与您最准确的数据和最好的服务体验,希望可以在大家的科研路上有所帮助。

 

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

来源:科学指南针

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值