1. 用二维数组求杨辉三角,这个是比较简单的
解析:先找杨辉三角的规律:杨辉三角的第 i 行第 j 列的值等于第 i-1 行第 j 列的值加上第 i-1行第 j-1列值之和。从杨辉三角可以发现,其第 1 列和最后 1 列数字都是1,因此,先用动态内存malloc函数申请一个二维数组,对第 1 列(数组下标第0列)和最后 1 列做特殊处理,让其为1,其他的值就按照杨辉三角的规律来,即 arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1],这样就可以得到杨辉三角,记得最后要对申请的动态内存用 free 函数进行释放。本文没有将杨辉三角的形式写成金字塔型。
#include<stdio.h>
#include<stdlib.h>
void YangHui2(const int n)
{
int** arr = (int**)malloc(n * sizeof(int*));
for (int i = 0; i < n; i++)
{
arr[i] = (int*)malloc(n * sizeof(int));
}
for (int i = 0; i < n; i++)//行号
{
for (int j = 0; j <= i; j++)//列号
{
if (j == 0 || i == j)//每一行第一个数和最后一个数都为1
{
arr[i][j] = 1;
}
else
{
arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
}
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
{
printf("%-6d", arr[i][j]);
}
printf("\n");
}
for (int i = 0; i < n; i++)
{
free(arr[i]);
}
free(arr);
}
int main()
{
YangHui2(15);
return 0;
}
运行结果:
2. 用一维数组(两种方法)
方法一:
解析:用malloc函数申请两个一维数组,将两个数组的所有元素全部赋值为1,从每一行下标为1的元素开始,将brr中元素用公式brr[j] = arr[j] + arr[j - 1]算出来,最后将brr中元素覆盖到arr中
#include<stdio.h>
#include<stdlib.h>
void YangHui1(const int n)
{
int* arr = (int*)malloc(n * sizeof(int));
int* brr = (int*)malloc(n * sizeof(int));
for (int i = 0; i < n; i++)//将arr和brr全部赋值为1
{
arr[i] = brr[i] = 1;
}
for (int i = 0; i < n; i++)//处理第i行数据
{
for (int j = 1; j < i; j++)
{
brr[j] = arr[j] + arr[j - 1];
}
for (int k = 0; k <= i; k++)//打印和将brr数据向arr覆盖
{
printf("%-5d", brr[k]);
arr[k] = brr[k];
}
printf("\n");
}
free(arr);
free(brr);
}
int main()
{
YangHui1(15);
return 0;
}
运行结果:
方法二:
解析:用calloc函数申请一个全部元素为0的数组arr,将其第一个元素赋值为1,第i行第j个元素就等于第i行第j个元素加第i行第j-1个元素之和,也就是从每一行的最后一个元素往每一行的前面的元素推,直到数组下标为0的元素截止。
#include<stdio.h>
#include<stdlib.h>
void YangHui1_2(const int n)
{
int* arr = (int*)calloc(n, sizeof(int));
arr[0] = 1;
for (int i = 0; i < n; i++)//处理第i行数据
{
for (int j = i; j >= 1; j--)
{
arr[j] = arr[j] + arr[j - 1];
}
for (int k = 0; k <= i; k++)
{
printf("%-5d", arr[k]);
}
printf("\n");
}
free(arr);
}
int main()
{
YangHui1_2(15);
return 0;
}
运行结果:
3. 不用数组
解析:不用数组的角度考虑,可以看出:在杨辉三角中,第i行的所有值特点:第一个值是1,第二个值1*(n-1)/1,第三个值1*(n-1)*(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3……依此类推,运用这个公式就可以求出杨辉三角。
#include<stdio.h>
void YangHui0(const int n)
{
int tmp = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= i; j++)
{
if (j == 1)//第一个特殊处理,其他的用公式
{
tmp = 1;
}
else//公式第n行:第一个值是1,第二个值1*(n-1)/1,第三个值1*(n-1)*(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推
{
tmp = tmp * (i - (j - 1)) / (j - 1);//1 3 3 1
}
printf("%-5d", tmp);
}
printf("\n");
}
}
int main()
{
YangHui0(15);
return 0;
}
运行结果: