想象一下,你的微信群或公众号中,有一个AI问答专家随时待命,帮助你和你的朋友们解答各种问题,是不是很酷?
现在,让我们来看看这个项目的技术框架,一步步了解它是如何构建的:
基础起点:
首先,确保你有一个Python环境。这就像是我们的魔法工坊,所有的魔法都从这里开始。
项目核心:
接着是我们的主角——chatgpt-on-wechat。这个项目就像是我们的魔杖,帮助我们在微信世界中施展魔法。
智慧之源:
我们需要连接到具有API接口的各种大型语言模型。你可以把它们想象成我们的魔法书,里面充满了知识和智慧。
知识宝库:
最后,我们的知识库,它是基于LinkAI构建的。这就像是我们的魔法药水,给我们的问答专家提供了额外的力量。
在下文中,我会详细介绍如何将这些组件融合在一起,创造出一个能在你的微信群中自如交流的AI问答专家。准备好了吗?让我们开始这趟魔法之旅!
1.Python环境准备:
首先,我们得确保有一个Python环境作为我们的基础。如果你已经准备好了,那就可以跳到下一步;如果没有,跟着我来,一步步搭建起来。
前往清华大学的镜像网站下载Anaconda,这是一个包含了Python和许多常用包的发行版。
2. 克隆主体项目:
把我们的项目代码从GitHub上拿下来:chatgpt-on-wechat。这就像是获取了一份魔法书的副本,接下来我们要做的是填写魔法咒语。
3. 关键参数配置:
解压你下载的项目,找到config-template.json文件,复制它并重命名为config.json。现在,我们来填写魔法咒语:
- open_ai_api_base:填入一个国内可以使用的API URL,比如文心或者星火。
- open_ai_api_key: 填入你的API密钥。
- text_to_image:微信现在不支持图片生成,这一项我们先跳过。
- proxy:如果你有代理服务器,填在这里;没有就留空。
- hot_reload:设置为true,这样就不用每次重启都扫码登录了。
- single_chat_prefix:设定一个前缀,比如“@AI”,当别人用这个召唤你的AI助手时,它就会回答。
- group_name_white_list: 决定你的AI助手在哪些群聊中活跃。如果填ALL_GROUP,它就会在所有群里工作。
- speech_recognition:设置为false,除非你想让它识别语音消息。
- use_linkai:决定是否启用知识库功能。
注意:检查config.json的格式是否正确,以免引起不必要的错误。
4. 安装依赖:
使用清华大学提供的Python包镜像,这样可以加速下载过程。
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
如果你遇到因为Python版本不兼容而导致的问题,可以尝试手动安装出错的包,或者调整Python的版本。
5. 运行程序:
一切准备就绪后,进入项目目录,运行下面的命令:
python app.py
屏幕上会显示一个二维码,用微信扫一扫,登录你的AI助手。注意,这会导致你的PC端微信下线,反之亦然。
现在,我们已经成功搭建了你的微信群AI问答专家,接下来我们将其与知识库结合,以便它能提供更加专业和深入的回答。下面是如何实现这一步骤的详细指南。
6. 知识库的链接:
目前,你的AI助手已经能够通过连接到大型语言模型来回答一般性问题,这些回答基于模型训练时所使用的数据。但如果你希望它在特定领域提供更为精准的信息,接入知识库是关键所在。我们将通过Link-AI平台来实现这一功能。
登录平台:访问https://link-ai.tech/ 并登录。在控制台中,你会看到“知识库”选项,这里展示了你已有的知识库或可以创建新的知识库。
创建知识库:点击创建知识库,这一步允许你导入自己的知识文档并进行解析。这个过程类似于给你的AI助手注入新的知识血液。
解析无结构文档:Link-AI会采用类似于RAG(Retrieval-Augmented Generation)的方法来解析你的文档,建立起一个向量数据库。文档会被分割成小段,每段都会被嵌入到模型中,以便在需要时被检索和调用。
获取API密钥:在应用接入部分创建一个API密钥,并将其复制下来。
获取API密钥:在应用接入部分创建一个API密钥,并将其复制下来。
配置文件更新:回到你的config.json文件,用你刚刚复制的信息更新以下字段,以此来完成知识库的接入。
"use_linkai": true,
"linkai_api_key": "xxxx",
"linkai_app_code": "xxxxx"
确保保存文件。现在,你的AI助手不仅能够回答一般性问题,还可以访问知识库中的信息,为你提供更加专业的答案。
完成这些步骤后,你的微信群AI问答专家就不仅仅是一个普通的聊天伙伴
了,它已经变成了一个拥有深厚知识储备的专业顾问
。现在,就让它在群聊中大展身手吧!
为什么要学AI大模型?
2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。