1. 开发灵感
在智能体开发过程中,我的灵感来源于日常生活中常见的两类场景:一是日益增长的购车需求,二是日常通勤中地铁出行的痛点。因此,我设计了两个智能助手:汽车购物顾问和地铁判官。
- 汽车购物顾问的设计目标是为用户提供专业的汽车选购建议,帮助用户在购车过程中做出最优决策。这一灵感来自于朋友和家庭成员在购车时常遇到的困惑:如何在多种车型中挑选、如何对比配置和价格等。我希望通过这个助手,解决购车用户在信息过载中的痛点。
- 地铁判官则聚焦于日常通勤中遇到的种种小麻烦:如地铁上被占座、突遇嘈杂干扰等。它旨在以诙谐幽默的方式引导用户面对这些问题,同时提供一些有效的沟通策略。这样设计的初衷是为通勤用户提供情感支持,帮助他们轻松应对出行中的小插曲。
2. 开发步骤
在文心智能体平台上开发这两个智能助手时,我大致遵循了以下步骤:
-
角色定位与功能设计:
- 明确每个智能体的定位和目标用户。
- 确定其交流风格:例如,汽车购物顾问采用的是专业、精简、实用的表达风格;地铁判官则偏向于幽默、有趣且具有调侃色彩的语言风格。
-
场景构建与对话设计:
- 针对不同的用户需求设计具体的对话场景和任务:如汽车顾问中包含“车型推荐”、“配置分析”、“优惠信息获取”等功能;地铁判官则着重于“地铁行为纠纷处理”、“沟通技巧”和“情感舒缓”方面的场景。
- 每个场景下设计若干子问题,如汽车顾问中涉及“我预算有限,能推荐几款性价比高的车型吗?”、“这款车的安全配置有哪些?”等;地铁判官则包含“有人在地铁上占座怎么办?”、“旁边小孩音乐放太大,怎么解决?”等情境。
-
设置智能体的交互引导:
- 针对每个场景设置开场白和引导语,让用户在首次接触时能够明确智能体的能力和使用场景。
- 开场语设计上,我为汽车顾问设置了“您好!我是您的汽车小助手,无论是首次购车还是换车升级,我都能提供专业建议”;而地铁判官则采用了“说出你在地铁上遇到的烦心事,我来帮你解决!”
-
配置插件及外部数据源:
- 为智能体接入了汽车市场的实时信息插件(如
faicaiqou_api_v1
),以便提供最新的车型资讯和报价信息。 - 设计地铁判官时,引入了实时知识库功能,以确保能够动态更新和应对用户的突发问题。
- 为智能体接入了汽车市场的实时信息插件(如
-
调试与优化:
- 通过不断调试和用户测试,优化了智能体的对话逻辑和应答模式,确保其能够精准理解用户意图,并提供有针对性的建议。
3. 工作流与插件运用心得
在智能体的工作流配置中,我采用了分层设计的策略,即每个场景或问题点都有专门的逻辑模块来处理对应的用户意图,从而避免了对话过程中因意图混淆而导致的重复或无效应答。
-
插件应用心得:
- 汽车顾问中使用了
faicaiqou_api_v1
插件来获取最新车型和报价,并通过getReliableSource
模块来过滤无效信息。这使得每次推荐都能基于可靠的市场数据,而不是依靠固定的静态知识库。 - 地铁判官则通过知识库插件来动态更新日常突发问题的处理方式,并与语料库结合,实现了智能判别与个性化应答,确保对话的趣味性和时效性。
- 汽车顾问中使用了
-
工作流设计:
- 汽车顾问的工作流设计主要围绕“用户需求分析 → 车型匹配 → 报价与优惠推荐 → 购车流程指导”展开。每个步骤之间设置了明确的条件判断,确保能够根据不同用户的输入灵活跳转到最相关的场景中。
- 地铁判官的工作流则更加注重情感识别和对话引导。在用户描述问题时,系统首先通过情感分析插件评估其当前情绪,并根据分析结果引导用户表达或发泄情绪,再提供相应的解决策略。
-
优化技巧:
- 在场景切换时,加入了上下文记忆功能,使得智能体能够记住用户之前的提问,从而在多轮对话中保持一致性。
- 设计幽默或情感化表达时,加入了随机生成的语句库,提升对话的生动性与多样性,让用户每次与智能体的交流都有新鲜感。