字节内部热捧“7种大模型微调的方法笔记”,太完整了

背景

随着 ChatGPT 的爆火,很多机构都开源了自己的大模型,比如清华的 ChatGLM-6B/ChatGLM-10B/ChatGLM-130B,HuggingFace 的 BLOOM-176B。当然还有很多没有开源的,比如 OpenAI 的 ChatGPT/GPT-4,百度的文心一言,谷歌的 PLAM-540B,华为的盘古大模型,阿里的通义千问,等等。

这些大公司或者研究机构,都是有足够资源的来开发大模型,但是对于一般的小公司或者个人来说,要想开发自己的大模型几乎不可能,要知道像 ChatGPT 这样的大模型,一次训练的成本就在上千亿美元。

那么那些小公司或者个人,又怎么能够利用这些开源的大模型,在自己的数据上继续训练,从而应用于自己的业务场景?有没有低成本的方法微调大模型?

所以,今天则分享出自字节内部的“7种大模型微调的方法笔记”,笔记内容没有讲一句废话,全篇看下来都是精华!

PEFT包括:

  • LORA

  • OLORA

  • 适配器调整(Adapter Tuning)

  • 前缀调整(Prefix Tuning)

  • 提示调整(Prompt Tuning)

  • P-Tuning

  • P-Tuning v2等

以下图表示了7种主流微调方法在Transformer网络架构中的作用位置及其简要说明,接下来将详细介绍每一种方法。

1、LORA

LORA(Low-Rank Adaptation)是一种旨在微调大型预训练语言模型(如GPT-3或BERT)的技术。

其核心理念在于,在模型的决定性层次中引入小型、低秩的矩阵来实现模型行为的微调,而无需对整个模型结构进行大幅度修改。

这种方法的优势在于,在不显著增加额外计算负担的前提下能够有效地微调模型,同时保留模型原有的性能水准。

LORA的操作流程如下:

1,确定微调目标权重矩阵:首先在大型模型(例如GPT)中识别出需要微调的权重矩阵,这些矩阵一般位于模型的多头自注意力和前馈神经网络部分。

2,引入两个低秩矩阵:然后,引入两个维度较小的低秩矩阵A和B。假设原始权重矩阵的尺寸为dd,则A和B的尺寸可能为dr和r*d,其中r远小于d。

3,计算低秩更新:通过这两个低秩矩阵的乘积AB来生成一个新矩阵,其秩(即r)远小于原始权重矩阵的秩。这个乘积实际上是对原始权重矩阵的一种低秩近似调整。

4,结合原始权重:最终,新生成的低秩矩阵AB被叠加到原始权重矩阵上。因此,原始权重经过了微调,但大部分权重维持不变。这个过程可以用数学表达式描述为:新权重=原始权重+ AB。

以一个具体实例来说,假设我们手头有一个大型语言模型,它通常用于执行广泛的自然语言处理任务。
现在,我们打算将其微调,使其在处理医疗健康相关的文本上更为擅长。
采用LORA方法,我们无需直接修改模型现有的大量权重。相反,只需在模型的关键部位引入低秩矩阵,并通过这些矩阵的乘积来进行有效的权重调整。
这样一来,模型就能更好地适应医疗健康领域的专业语言和术语,同时也避免了大规模权重调整和重新训练的必要。

2、QLoRA

OLoRA(QuantizedLow-RankAdaptation)是一种结合了LORA(Low-RankAdaptation)方法与深度量化技术的高效模型微调手段。

OLORA的核心在于:

1,量化技术:QLORA采用创新的技术将预训练模型量化为4位。这一技术包括低精度存储数据类型(4-bitNormalFloat,简称NF4)和计算数据类型(16-bit BrainFloat)。这种做法极大地减少了模型存储需求,同时保持了模型精度的最小损失。

2,量化操作:在4位量化中,每个权重由4个比特表示,量化过程中需选择最重要的值并将它们映射到16个可能的值之一。首先确定量化范围(例如-1到1),然后将这个范围分成16个区间,每个区间对应一个4-bit值。然后,原始的32位浮点数值将映射到最近的量化区间值上。

3,微调阶段:在训练期间,QLORA先以4-bit格式加载模型,训练时将数值反量化到bf16进行训练,这样大幅减少了训练所需的显存。例如,33B的LLaMA模型可以在24 GB的显卡上进行训练。

量化过程的挑战在于设计合适的映射和量化策略,以最小化精度损失对性能的影响。在大型模型中,这种方法可以显著减少内存和计算需求,使得在资源有限的环境下部署和训练成为可能。

3、适配器调整(Adapter Tuning)

与LORA技术类似,适配器调整的目标是在保留预训练模型原始参数不变的前提下,使模型能够适应新的任务。适配器调整的方法是在模型的每个层或选定层之间插入小型神经网络模块,称为“适配器”。这些适配器是可训练的,而原始模型的参数则保持不变。

适配器调整的关键步骤包括:

1,以预训练模型为基础:初始阶段,我们拥有一个已经经过预训练的大型模型,如BERT或GPT,该模型已经学习了丰富的语言特征和模式。

2,插入适配器:在预训练模型的每个层或指定层中,我们插入适配器。适配器是小型的神经网络,一般包含少量层次,并且参数规模相对较小。

3,维持预训练参数不变:在微调过程中原有的预训练模型参数保持不变。我们不直接调整这些参数,而是专注于适配器的参数训练。

4,训练适配器:适配器的参数会根据特定任务的数据进行训练,使适配器能够学习如何根据任务调整模型的行为。

5,针对任务的调整:通过这种方式,模型能够对每个特定任务进行微调,同时不影响模型其他部分的通用性能。适配器有助于模型更好地理解和处理与特定任务相关的特殊模式和数据。

6,高效与灵活:由于只有部分参数被调整,适配器调整方法相比于全模型微调更为高效,并且允许模型迅速适应新任务。

例如,如果我们有一个大型文本生成模型,它通常用于执行广泛的文本生成任务。若要将其微调以生成专业的金融报告,我们可以在模型的关键层中加入适配器。

在微调过程中,仅有适配器的参数会根据金融领域的数据进行更新,使得模型更好地适应金融报告的写作风格和术语,同时避免对整个模型架构进行大幅度调整。

LORA与适配器调整的主要区别在于:

1,LORA:在模型的权重矩阵中引入低秩矩阵来实现微调。这些低秩矩阵作为原有权重矩阵的修改项,在实际计算时对原有权重矩阵进行调整。

2,适配器调整:通过在模型各层中添加小型神经网络模块凤“适配器”,来实现微调。适配器独立于模型的主体结构,仅适配器的参数在微调过程中更新,而模型的其他预训练参数保持不变。

4.前缀调整(Prefix Tuning )

与传统的微调范式不同,前缀调整提出了一种新的策略,即在预训练的语言模型(LM)输入序列前添加可训练、任务特定的前缀,从而实现针对不同任务的微调。这意味着我们可以为不同任务保存不同的前缀,而不是为每个任务保存一整套微调后的模型权重,从而节省了大量的存储空间和微调成本。

前缀实际上是一种连续可微的虚拟标记(SoftPrompt/Continuous Prompt),与离散的Token相比,它们更易于优化并且效果更佳。这种方法的优势在于不需要调整模型的所有权重,而是通过在输入中添加前缀来调整模型的行为,从而节省大量的计算资源,同时使得单一模型能够适应多种不同的任务。前缀可以是固定的(即手动设计的静态提示)或可训练的(即模型在训练过程中学习的动态提示)。

5、提示调整:(Prompt Tuning)

提示调整是一种在预训练语言模型输入中引入可学习嵌入向量作为提示的微调方法。这些可训练的提示向量在训练过程中更新,以指导模型输出更适合特定任务的响应。

提示调整与前缀调整都涉及在输入数据中添加可学习的向量,这些向量是在输入层添加的,但两者的策略和目的不同:

1,提示调整:旨在模仿自然语言中的提示形式,将可学习向量(通常称为提示标记)设计为模型针对特定任务生成特定类型输出的引导。这些向量通常被视为任务指导信息的一部分,倾向于使用较少的向量来模仿传统的自然语言提示。

2,前缀调整:可学习前缀更多地用于提供输入数据的直接上下文信息,作为模型内部表示的一部分,可以影响整个模型的行为

以下是两者的训练示例,以说明它们的不同:

1,提示调整示例:
输入序列:[Prompt1][Prompt2]“这部电影令人振奋。”
问题:评价这部电影的情感倾向,
答案:模型需要预测情感倾向(例如“积极”)提示:没有明确的外部提示,[Prompt1lPrompt2]作为引导模型的内部提示,这里的问题是隐含的,即判断文本中表达的情感倾向。

2,前缀调整示例:
输入序列:[Prefix1][Prefix2][Prefix3]“l want towatch a movie.
问题:根据前缀生成后续的自然语言文本答案:模型生成的文本,如“thatis exciting andfun.”
提示:前缀本身提供上下文信息,没有单独的外部提示。

6、P-Tuning

P-Tuning(基于提示的微调)和提示调整都是为了调整大型预训练语言模型(如GPT系列)以适应特定任务而设计的技术。两者都利用预训练的语言模型执行特定的下游任务,如文本分类、情感分析等,并使用某种形式的“提示”或“指导”来引导模型输出,以更好地适应特定任务。

提示调整与P-Tuning的主要区别在于:

1,提示调整:使用静态的、可训练的虚拟标记嵌入,在初始化后保持固定,除非在训练过程中更新。这种方法相对简单,因为它只涉及调整一组固定的嵌入参数,在处理多种任务时表现良好,但可能在处理特别复杂或需要细粒度控制的任务时受限。

2,P-Tuning:使用一个可训练的LSTM模型(称为提示编码器prompt encoder)来动态生成虚拟标记嵌入,允许根据输入数据的不同生成不同的嵌入,提供更高的灵活性和适应性,适合需要精细控制和理解复杂上下文的任务。这种方法相对复杂,因为它涉及一个额外的LSTM模型来生成虚拟标记嵌入。

P-Tuning中使用LSTM(长短期记忆网络)作为生成虚拟标记嵌入的工具,利用了LSTM的以下优势:

1,更好的适应性和灵活性:LSTM可以捕捉输入数据中的时间序列特征,更好地理解和适应复杂的、顺序依赖的任务,如文本生成或序列标注。

2,改进的上下文理解:LSTM因其循环结构,擅长处理和理解长期依赖关系和复杂的上下文信息。

3,参数共享和泛化能力:在P-Tuning中,LSTM模型的参数可以在多个任务之间共享,这提高了模型的泛化能力,并减少了针对每个单独任务的训练需求。而在提示调整中,每个任务通常都有其独立的虚拟标记嵌入,这可能限制了跨任务泛化的能力。

这些特性使得LSTM特别适合处理复杂任务和需要细粒度控制的应用场景。然而,这些优势也伴随着更高的计算复杂度和资源需求,因此在实际应用中需要根据具体需求和资源限制来权衡使用LSTM的决策。

7、P-Tuning v2

P-Tuning v2是P-Tuning的进一步改进版,在P-Tuning中,连续提示被插入到输入序列的嵌入层中除了语言模型的输入层,其他层的提示嵌入都来自于上一层。

这种设计存在两个问题:

1,第一,它限制了优化参数的数量。由于模型的输入文本长度是固定的,通常为512,因此提示的长度不能过长。

2,第二,当模型层数很深时,微调时模型的稳定性难以保证;模型层数越深,第一层输入的提示对后面层的影响难以预测,这会影响模型的稳定性。

P-Tuning v2的改进在于,不仅在第一层插入连续提示,而是在多层都插入连续提示,且层与层之间的连续提示是相互独立的。这样,在模型微调时,可训练的参数量增加了,P-Tuning v2在应对复杂的自然语言理解(NLU)任务和小型模型方面,相比原始P-Tuning具有更出色的效能。

除了以上PEFT,当前还存在PILL(Pluggable、SSF(ScalingInstruction Language Learning)& Shifting Your Features)等其他类型的微调方法。

PILL是PEFT的一个特定实现,特别关注于如何通过插入可训练的模块或插件来提升模型的任务适应性。这些插件被设计为与原始模型协同工作,以提高模型在处理特定任务时的效率和效果。

SSF核心思想是对模型的特征(即模型层的输出)进行缩放(Scaling)和位移(Shifting)。简单来说,就是通过调整特征的比例和偏移量来优化模型的性能。

这种方法可以在改善模型对特定任务的响应时,不需要调整或重新训练模型中的所有参数,从而在节省计算资源的同时保持或提升模型性能。这对于处理大规模模型特别有效,因为它减少了训练和调整所需的资源和时间。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值