转型AI产品经理指南(非常详细)零基础入门到精通,收藏这一篇就够了

本人是从2023.12开始转型的产品经理小白,从孵化项目的研究人员,转型为孵化项目的产品经理。该笔记主要用来产品经理进阶记录,本篇为系列第59篇。笔记内容包含工作遇见的问题及解法、工作方法论梳理、工作复盘思考。

本篇笔记检索学习”如何成为AI产品经理?

检索学习了一些AI产品相关的内容,突然觉得这方面可能我更具有一定的发言权。

我负责的两个产品的核心模块都强依赖算法,其中也会涉及自研的通用大模型和垂类大模型,跟对应的大模型产品经理也有交互。为了更好的产品效果,也想接入效果好的行业最新大模型,所以和同事对于GPT4o等大模型在场景和技术性能上也一起测评过,同时也定期追踪AI行业的新动态。

这样一看我还是实实在在在搞AI产品、大模型产品方面的产品经理嘞!那正好结合今天检索到的内容来讲一下我对于AI产品经理的通俗理解,可能会理解有错,请懂得同学也多批评指正~

我会分AI产品经理和与时俱进的大模型产品经理来讲一下,首先,AI产品经理绝对是要懂技术以及懂AI相关的常识,比如AI关键领域的技术有NLP、CV、OCR、ASR、KG等。大模型方面呢,从技术方面的阐释我也讲不清楚,但我比较了解大模型方面的产品经理在做什么。

关于AI的简单理解:

和神经网络、机器学习、深度学习等关键词的内容,大都可以称之为AI+xx。AI相关的三要素——数据、算法、算力,喂入足够多的数据,运行算法模型,随数据训练的增多,算法越发精准而强大。系统运行于算力底座上,计算形式可以多样(端、边、云),提供单元可以是CPU、GPU或NPU。

喂的数据类型可以是图片、文字、语音,自然也会对应不同的AI技术,AI关键领域的技术有NLP、CV、OCR、ASR、KG等。

NLP是自然语言处理,听有的同学说,ChatGPT出来的时候大家都说NLP已死。CV是计算机视觉,处理图片、视频等,一开始老时听算法同学讲CVCV的,心里大大的迷惑又不敢问,悄悄地搜索,毕竟以前一听CV大脑自动反应地是简历嘛。OCR文本识别,从图像中提取文字信息。ASR自动语音识别,将语音转化为文本。KG知识图谱,也称之为语义网络。

单拎出来都是单一模态,但现在都是搞多模态的,比如说既识别图像又识别声音就算多模态了。

说到这突然有一些泪目,朋友们,你敢相信2年前我对技术一无所知。 从金融出身的咨询女到AI相关的产品经理,中间是AI技术对个人职业生涯的深刻影响。AI时代已经是大势所趋,行业非常需要AI产品经理和AI大模型方案专家,而且在这条赛道上,即使像我这样的非技术人都可以通过学习获得入场券,我是十分推荐大家,去学习学习大模型的核心技术和产品案例的。

如何转行/入门AI产品经理 ?

🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩

🔥AIGC在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,以下是整个学习思路和方向👇

1️⃣AI产品经理全局学习
2️⃣python系统学习
3️⃣机器学习&深度学习
4️⃣热门AI产品竞品分析
5️⃣AI产品设计学习
6️⃣AI产品0-1实操项目经验
7️⃣AI产品求职&面试

💎以上7点,看起来简单,内部内容其实很多,每一个篇章,展开都有夯实且丰富的内容,需要深度学习。

在这里插入图片描述

👉AI产品经理大模型视频和书籍PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉获取方式:

😝文章篇幅有限,详细资料有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

AI产品经理

  • 应用层:AI产品经理的技能与行业经验结合,将AI能力在金融、教育、安防、文娱、广告等领域,AI产品的类型有策略类、内容类、娱乐类、医疗类、社交类等
  • 技术层:AI产品经理主要参与NLP、CV、OCR、ASR、KG等AI能力建设,AI产品的类型有语音类、视觉类、文本类等
  • 基础层:AI产品经理参与主机(芯片)、云服务、数据平台、AI平台等底层平台建设,AI产品的类型有硬件类、端设备类、边缘云类、物联网类、数据平台类、AI平台类等

我就是处在应用层,将AI能力和行业结合在一起,这里面涉及到AI的部分,我最重要的是定义清楚输入和输出,以及标准。能多模态的就多模态,多模态不成熟的就先单模态,再用规则去进行组合。

大模型产品经理

如果去看大语言模型产品的PRD文档,目录大概是意图大类及优先级—>RAG—>提示词—>模型评测(评测标准、指标要求、测试集

提到大模型必提prompt],Prompt技术的基本思想是,通过给模型提供一个或多个提示词或短语,来指导模型生成符合要求的输出。

在提供提示词之前,大模型产品经理一定得定义清楚自己的产品到底应用在哪,可以是既有的某个产品环节的替代优化,也可以是针对某类目标客户的特定需求去做的应用。

目前市场上的大模型,还没法像发布会上的GPT4o的demo所展示的那样跨媒介产出。而且如果是垂类大语言模型,那么去梳理意图类别就非常重要了。

考核这类大模型产品经理,也会从模型评测的结果,以及用户的数量去考核。

以上仅为我现阶段的认知理解,或许随着对接更多,以及大模型技术的飞速发展,下一阶段我对AI和大模型产品经理的理解也会实时更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值