起薪4万的AI产品经理,必须掌握的技术模型与3大知识体系

这是求职产品经理系列的第170篇文章


一、AI行业的招聘趋势以及人才紧缺度

根据脉脉《2023年人才报告》显示:人工智能成为2022最缺人行业,⼈⼯智能⾏业的⼈才紧缺指数(⼈才需求量/⼈才投递量)为0.83,也就是说这个领域人才缺口巨大且没那么卷。而且随着ChatGPT4.0的大火,这种趋势在2023年强势蔓延。

目前,各行业内人士的共识就是:AI产品经理超级缺人,大小公司都缺。我最近跟小米、百度的资深AI产品沟通,他们反馈:在大量招人,只要有AI相关的项目经验,学历别太差就能拿到面试机会。而且领导很舍得给钱,涨薪40-60%很正常。

在AI领域,特别是最近大火的AIGC方向,招聘量最大的就是两类岗位:一类是研发类,一类是产品类。

整体上,这两类岗位的薪资也最高,也最建议大家求职这两类岗位。根据脉脉高聘人才智库的数据显示:

AIGC领域热招岗位中,图像识别、算法研究员、深度学习岗位的薪资均已达到百万。

此外,AIGC产品经理作为非技术岗,薪资水平也达到90万元,与其他领域相比占据较大优势,吸引大量产品人才投递。

二、AI产品经理的具体工作流程及知识体系

其实AI产品经理整体的工作流程跟互联网产品经理非常类似。具体的工作流程有以下几个步骤:

定义需求——数据准备——产品设计——上线反馈。

(一)定义需求

AI产品经理,本质还是“产品经理”,最核心的工作,还是找到需求,专注于产品价值。

AI是个用新技术的解决问题的工具,对于产品经理来说,最主要的工作,还是去思考,用这个工具,能够解决什么以前不能解决的需求,或者用什么更好的方式解决原来的需求。

结合自己的行业经验,去洞察,去发现问题,作为“产品经理”本质的、核心的意义还是不变的。

2.如何通过AI解决——技术理解

找到需要解决的问题后,在如何解决方面,涉及到了对AI的技术理解。

根据产品现状,不同的的产品对应的技术方向不同。

AI大的技术方向有计算机视觉、自然语言处理、语音工程、规划决策、大数据分析。根据自己所做产品的行业,对不同的技术理解有不同的要求。

AI是一个找出对应关系的工具,把行业内的需求,转化成的“输入”和“输出”的问题,然后收集数据,整理成训练集给AI进行学习。不同技术方向下的“输入”和“输出”,形式会有不同。
在这里插入图片描述

(二)数据准备

当定义好需求,明确了根据需求要给AI定义的“输入”和“输出”是什么之后,接下来就需要为AI准备“输入-输出”的训练集,并训练AI了。

必须要说明的是:这个环节是针对于非大模型类的AI产品经理需要做的事情,当然大模型出现之后,如果是针对AIGC领域的产品经理是不需要做这件事的。

所以,当下对于技术背景不是很强的小伙伴,AIGC领域的产品经理是一个可以重点考虑的方向。

我把数据准备分成了三个阶段,数据来源——数据定义——数据交付。

在这三个阶段中,需要的规划、收集、整理数据的能力,我觉得是AI产品经理与传统产品一个非常大的差别了。

1.数据来源

就像传统产品一样,产品开始前必须先确定数据来源。

传统产品的数据来源是直接给提供给用户的使用数据,AI的数据来源是指训练AI的数据来源。

我把数据来源分成了两个方面,第一个是为AI准备的基础数据,第二个是结合产品设计,在和用户交互中收集的数据。

基础数据是用来制作AI产品的数据,交互中收集的数据,是产品上线后,用户对产品进行训练的数据。

(1)基础数据

产品经理首先要找到合适的数据源,它可能会是所做产品原来的数据积累,也可能是各方收集的数据甚至人力撰写而来的数据。这些数据需要被整理成教育AI的训练集和测试集。大量的深度学习对数据的质量也有很高的要求。

准备训练集和测试集是AI产品经理相对与传统产品经理新增的任务,也是一个非常艰难和繁杂的任务,而且任务量很大,需要团队一起配合完成,并且不断探索更加简便的方法。

(2)在交互中收集数据

AI产品并不像传统产品一样,每一版是一个固定的形态。

它有一个很大的特质是“动”,AI是成长的,是不断进步和变化的,和用户交互的过程,就是它的迭代过程。

交互中的数据是数据来源的一个重要方面。

(3)数据定义

当有了数据来源,接下需要为AI整理训练集和测试集。这期间涉及到很多繁杂的工作,大量的数据清洗、整理数据,并且有非常多需要考虑的问题:

  • 用什么样的方法清洗和整理数据?

  • 设置什么样的“输入”和“输出”能够保证测试集训练出的机器能更好的运用在实际场景中?

  • 在交互中,要收集什么数据?用什么样的形式收集数据?如何把收集数据的交互更好地融合在用户的使用中?

这些都是AI产品经理面对数据时需要考虑的,每一个问题下都有非常非常多的内容需要探索。在真正的实践过程中,还有各种各样的疑难杂症,需要根据机器学习效果对训练集进行不断的不断的调整和修改。

(三)产品设计

定义好了产品需求后,就可以开始进行产品设计了。产品设计本质和传统产品经理的工作是一样的,根据需求和问题做出能解决问题的产品。

我主要两个方面:基础功能、动态中发展。

(1)基础功能

产品的大框架肯定还是基于我们的产品本身的形态,它是一个智能音箱还是一个智能电视,还是在App里的一个智能助手…

接下来看我们要完成的需求,如果它是一个用在App里的智能助手,现在要训练它完成“找功能”这个需求,那么产品的形态和设计肯定就是围绕着“找功能”来做。相信这部分工作互联网领域的产品经理是完全没有任何难度的。

(2)动态中发展

动态中发展的含义两个方面,第一个在上文中已经提到了,产品在使用中迭代。

要在产品设计中添加数据收集的设计,通过产品的不断使用,不断从用户那里得到更多的更深入的数据,在使用中为AI进行训练,在AI解决问题越来越准确和深入的过程中迭代产品。

基于新获得的更加深入和了解用户的数据,也可以为该场景下更加深入功能的制作提供基础。比如一开始只能帮助用户唤起应用,之后就可以考虑帮助用户唤起并使用应用内的内容。

第二个动态指的是用户和产品的交互是动态的。

不同于传统产品,点一个确定按钮就是确定按钮,点一个取消就是取消,在语音对话等场景下,产品的功能是需要在和用户的动态交互中被唤起的。

当然这里主要谈到的是语音对话等场景下,大部分用在搜索、推荐等传统界面内的AI交互还是和互联网界面一样。

而语音场景下和用户不断对话的情况,涉及到了场景剧本编写、多轮对话设计、词槽设计等方面,还有语音交互的规则以及经验。

比如地图应用的小助手使用场景多在开车用户开车时,用户会问些什么,怎样编写剧本,怎样进行词槽填充?

在未来,也会出现越来越多AI产品不局限在固定的界面内,AI产品经理面临的是对更丰富和广阔的场景的把握。

(四)上线反馈

AI产品上线之后一般是需要做三件事:1)模型评估指标体系的搭建,这部分应该是在产品定义之初就搭建好;2)指标的计算逻辑设计;3)模型验收测试。

根据以上AI产品经理工作流程的梳理,我梳理了3大技能模型,如上图所示如果有兴趣想提前布局进入AI产品经理的领域的同学,可以根据这个作为方向,一点点的提升自己的能力。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值