【阴影去除】Shadow Removal

@[toc]Shadow Removal

Shadow Removal

深度学习在阴影去除问题中的应用已经取得了显著的进展。阴影去除是计算机视觉中的一个重要任务,旨在从图像中去除阴影,恢复无阴影的图像。

1. 问题定义

阴影去除的目标是从带有阴影的图像中恢复出无阴影的图像。阴影通常会导致图像局部区域的亮度和颜色失真,影响图像的质量和后续的图像分析任务(如目标检测、分割等)。

2. 深度学习在阴影去除中的应用

深度学习通过自动学习图像特征和复杂的映射关系,显著提升了阴影去除的效果。以下是一些常见的深度学习方法:

2.1 基于卷积神经网络(CNN)的方法

ST-CGAN(Spatial-Temporal Conditional GAN):ST-CGAN是一种基于条件生成对抗网络(cGAN)的方法,通过引入空间和时间信息来去除阴影。该方法在动态场景中表现良好。

DSC(Deep Shadow Context Network):DSC网络通过引入上下文信息来去除阴影,能够更好地处理复杂场景中的阴影。

2.2 基于生成对抗网络(GAN)的方法

Mask-ShadowGAN:该方法使用GAN框架,通过生成阴影掩码来指导阴影去除过程。生成器和判别器共同学习阴影区域的分布,从而生成无阴影的图像。

CycleGAN:CycleGAN通过无监督学习的方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanks66

你的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值