@[toc]Shadow Removal
Shadow Removal
深度学习
在阴影去除问题中的应用已经取得了显著的进展。阴影去除是计算机视觉中的一个重要任务,旨在从图像中去除阴影,恢复无阴影的图像。
1. 问题定义
阴影去除的目标是从带有阴影的图像中恢复出无阴影的图像。阴影通常会导致图像局部区域的亮度和颜色失真,影响图像的质量和后续的图像分析任务(如目标检测、分割等)。
2. 深度学习在阴影去除中的应用
深度学习通过自动学习图像特征和复杂的映射关系,显著提升了阴影去除的效果。以下是一些常见的深度学习方法:
2.1 基于卷积神经网络(CNN)的方法
ST-CGAN(Spatial-Temporal Conditional GAN):ST-CGAN是一种基于条件生成对抗网络(cGAN)的方法,通过引入空间和时间信息来去除阴影。该方法在动态场景中表现良好。
DSC(Deep Shadow Context Network):DSC网络通过引入上下文信息来去除阴影,能够更好地处理复杂场景中的阴影。
2.2 基于生成对抗网络(GAN)的方法
Mask-ShadowGAN:该方法使用GAN框架,通过生成阴影掩码来指导阴影去除过程。生成器和判别器共同学习阴影区域的分布,从而生成无阴影的图像。
CycleGAN:CycleGAN通过无监督学习的方式