977E - Cyclic Components(并查集)

题目大意:

        给定n个点和m条便构成一个无向简单图,求图中一共有几个圈。

题目种给出了圈的例子

其中左上角和右下角的7-10-16构成了圈。经过观察我们发现,如果k个点能够构成一个圈,那么每个结点的度数为2。根据这个性质,我们便有了以下的思路:

首先利用并查集将这个图分成若干个独立且联通的子图,接下来遍历子图中的所有结点,如果每个结点满足上述性质,那么我们就认为找到了一个圈。

需要注意的是,子图的结点个数不应该小于3,否咋无法构成一个圈。

AC代码如下:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
typedef long long ll;
int fa[maxn];
map<int, int>mp;//存储结点node的度数
vector<int>res[maxn];
int findfather(int x)
{
	if (fa[x] != x)
		fa[x] = findfather(fa[x]);//路径压缩
	return fa[x];
}
void Union(int a, int b)
{
	fa[findfather(a)] = findfather(b);
}
int main()
{
	int n,m;
	int x, y;
	int ans = 0;
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		fa[i] = i;
	}
	for (int i = 0; i < m; i++)
	{
		cin >> x >> y;
		mp[x]++;
		mp[y]++;
		if(findfather(x)!=findfather(y))
			Union(x, y);
	}
	for (int i = 1; i <= n; i++)
	{
		res[findfather(i)].push_back(i);
	}
	for (int i=1;i<=n;i++)
	{
		if (res[i].size() <=2)continue;//结点数应该大于2
		int flag = 1;
		for (int j=0;j<res[i].size();j++)
		{
			if (mp[res[i][j]] != 2)//每个点的度数应为2
			{
				flag = 0;
				break;
			}
		}
		if (flag == 1)
			ans++;
	}
	cout << ans << endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪小林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值