【吃瓜教程】西瓜书+南瓜书 第六章 学习笔记

本文详细介绍了支持向量机在处理线性可分和线性不可分数据集时的工作原理,包括超平面的确定、对偶问题、核函数的应用、软间隔与正则化的概念以及支持向量回归(SVR)的使用。重点阐述了如何通过优化间隔和限制错误来提高模型泛化性能。
摘要由CSDN通过智能技术生成

吃瓜教材:

西瓜书:周志华老师的《机器学习》

南瓜书:《机器学习公式详解》第2版

吃瓜视频:【吃瓜教程】《机器学习公式详解》(南瓜书)与西瓜书公式推导

第六章 支持向量机

6.1 间隔与支持向量

       支持向量机:对于线性可分数据集,支持向量机寻找距离正负样本都最远的超平面,感知机是随便一个超平面只要能区分样本即可,相比于感知机(所有黑色直线均可),支持向量机解(最粗的黑线)是唯一的,且不偏不倚,泛化性能更好。

6f9d88d17f1449d6b0e2cff972dc441c.png  超平面

f5e69dbf1d2d4d2493ac5beef173b0dc.png

1.给定一个w,b确定唯一一个超平面;

2.超平面方程不唯一(等号两边同×一个数,右边仍是0,左

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值