1、作用
ARIMA 模型的全称叫做自回归移动平均模型,是统计模型中最常见的一种用来进行时间序列预测的模型。
2、输入输出描述
输入:特征序列为1个时间序列数据定量变量
输出:未来N天的预测值
3、案例示例
基于3个月的某商品销售量,预测某商品的未来一周的销售量。
4、建模步骤
模型基于如下的观念:要预测的时间序列是由某个随机过程生成的.如果生成序列的随机过程不随时间变化,则该随机过程的结构可以被确切地刻画和描述。利用序列过去的观察值,可以外推出序列的未来值。在 ARIMA 模型中,序列的未来值被表示成滞后项和随机干扰项的当期及滞后期的线性函数,即模型的一般形式如下式所示:
ARIMA 模型的建模过程可以分为以下四个步骤:
1.时间序列的平稳性检验.通常采用 ADF 或 PP 检验方法,对原始序列进行单位根检验.如果序列不满足平稳性条件,可以通过差分变换或者对数差分变换,将非平稳时间序列转化为平稳时间序列,然后对平稳时间序列构建 ARIMA 模型;
2.确定模型的阶数.通过借助一些能够描述序列特征的统计量,如自相关(AC)系数和偏自相关(PAC) 系数,初步识别模型的可能形式,然后根据 AIC 等定阶准则,从可供选择的模型中选择一个最佳模型,此时差分数据为非白噪声序列;
3.参数估计与诊断检验.包括检验模型参数的显著性,模型本身的有效性以及检验残差序列是否为白噪声序列.如果模型通过检验,则模型设定基本正确,否则,必须重新确定模型的形式,并诊断检验,直至得到设定正确的模型形式;
4.用建立的 ARIMA 模型进行预测.