深度学习——时间序列模型评价指标总结

本文总结了深度学习时间序列模型的多种评价指标,包括均方误差(MSE)、均方根误差(RMSE)、平均绝对值误差(MAE)、平均绝对值百分比误差(MAPE)、对称平均绝对百分比误差(SMAPE)、均方对数误差(MSLE)等,并探讨了这些指标的特性和适用场景,帮助选择合适的评价标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大Y老师:小X,你做的这个时间序列模型用什么指标评价啊?

小X 直接把这篇甩给老师:老师您看哪个指标顺眼,就选哪个指标~


最近在实现基于深度学习的时间序列模型时,需要对模型进行评价,总结了一些常用的和不常用的评价指标,还有相关概念的辨析。

上面是玩笑话,在对模型进行评价时,要根据实际的数据特征和指标特性进行选择。

和方差

SSE(the sum of squares due to error),是观测值(observed values)与预测值(predicted values)的误差的平方和,公式为:
S S E ( y , y ^ ) = ∑ i = 1 n ( y i − y ^ i ) 2 SSE(y,\widehat{y})=\sum_{i=1}^{n}(y_{i}-\widehat{y}_{i})^{2} SSE(y,y )=i=1n(yiy i)2

均方误差

MSE(mean squared error),是观测值(observed values)与预测值(predicted values)的误差的平方和的均值,即SSE/n。它是误差的二阶矩,包含估计量的方差(variance)及其偏差(bias),是衡量估计量质量的指标,其公式为:
M S E ( y , y ^ ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE(y,\widehat{y})=\tfrac{1}{n}\sum_{i=1}^{n}(y_{i}-\widehat{y}_{i})^{2} MSE(y,y )=n1i=1n(yiy i)2

均方根误差

RMSE(root mean squared error),也称作RMSD(root mean square deviation),是MSE的算数平方根。由于每个误差(each error)对RMSD的影响与误差的平方(squared error)成正比,因此较大的误差会对RMSE影响过大,RMSE对异常值很敏感。其公式为:
R M S E ( y , y ^ ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 RMSE(y,\widehat{y})=\sqrt{\tfrac{1}{n}\sum_{i=1}^{n}(y_{i}-\widehat{y}_{i})^{2}} RMSE(y,y )=n1i=1n(yi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值