目录
随着机器学习和数据科学的快速发展,时间序列预测已经成为了许多领域的重要问题,包括金融、交通、气象、人口统计、医疗保健等。在时间序列预测中,我们通常会使用各种模型,例如ARIMA、VAR、LSTM等,来预测未来的数据趋势。然而,仅仅使用模型来预测未来的数据并不足够,我们还需要一些指标来评估预测结果的准确性和可靠性。本文将介绍三种常用的时间序列预测模型的评估指标,包括MAE、MSE、RMSE,并使用Matlab实现几个数学建模案例。
一、MAE(平均绝对误差)
平均绝对误差(Mean Absolute Error,MAE)是时间序列预测中最常用的指标之一,它衡量了预测值与真实值之间的平均绝对误差。MAE越小,说明模型的预测结果越准确。MAE的计算公式为:
$$MAE = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat y_i|$$
其中,$y_i$表示第$i$个真实值,$\hat y_i$表示第$i$个预测值,$n$表示样本数量。MAE计算的是预测值和真实值之间的绝对误差的平均值ÿ