数学建模进阶:时间序列预测模型的评估指标

本文介绍了时间序列预测中常用的评估指标MAE、MSE和RMSE,解释了它们的计算公式和含义,并通过ARIMA预测气温、LSTM预测股票价格、VAR预测货币汇率三个案例展示了如何使用这些指标评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、MAE(平均绝对误差)

二、MSE(均方误差)

三、RMSE(均方根误差)

四、时间序列预测模型评估指标应用案例

ARIMA模型预测气温

LSTM模型预测股票价格

VAR模型预测货币汇率


随着机器学习和数据科学的快速发展,时间序列预测已经成为了许多领域的重要问题,包括金融、交通、气象、人口统计、医疗保健等。在时间序列预测中,我们通常会使用各种模型,例如ARIMA、VAR、LSTM等,来预测未来的数据趋势。然而,仅仅使用模型来预测未来的数据并不足够,我们还需要一些指标来评估预测结果的准确性和可靠性。本文将介绍三种常用的时间序列预测模型的评估指标,包括MAE、MSE、RMSE,并使用Matlab实现几个数学建模案例。

一、MAE(平均绝对误差)

平均绝对误差(Mean Absolute Error,MAE)是时间序列预测中最常用的指标之一,它衡量了预测值与真实值之间的平均绝对误差。MAE越小,说明模型的预测结果越准确。MAE的计算公式为:

$$MAE = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat y_i|$$

其中,$y_i$表示第$i$个真实值,$\hat y_i$表示第$i$个预测值,$n$表示样本数量。MAE计算的是预测值和真实值之间的绝对误差的平均值ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值