学习内容:
静力学分析
多自由度机器人的动力学方程
坐标系间力和力矩的变换
1.机器人的静力分析
机器人可以处于位置控制状态,也可以处于力控制状态。
我们假设一个情景,要让机器人在机器零件上钻一个螺孔,机器人一方面要在轴上施加一定力,还要再丝锥方向上施加一定的力矩,使其转动。为此,控制器要驱动关节以一定的速度旋转,以便在手坐标系中产生适合的力和力矩。
为建立关节力和力矩与机器人手坐标系产生的力与力矩之间的关系,定义:
=
其中:fx,fy,fz是手坐标系中沿x,y,z轴的作用力。mx,my,mz是关于这三轴的力矩。
同时,定义:
表示关于手坐标系x,y,z三个轴的位移和转角。
对关节定义:
表示各关节处的力矩(对转动关节)和力(对滑动关节)。
表示关节的微分运动,既可以是旋转关节的角度,也可以是滑动关节的线位移。
利用虚功法,即关节总虚功(关节空间中力矩或力乘以位移)和机器受坐标系内总虚功(坐标系中的力矩乘以手坐标系中的位移)相等,可得:
根据第三章的内容:
标注部分为重要公式。
关节力和力矩由坐标系中期望的力和力矩决定。控制器可以根据手坐标系中的期望值计算关节力和力矩,并对机器人进行控制。
example:
运用公式求得
所以在1,2,6关节处施加对应的力和力矩,就能在手坐标系得到所期望的力和力矩。
实际上,在机器人运动过程中,雅克比矩阵将发生变化,为了使手坐标系内持续产生相同的力和力矩,关节处的力和力矩要随之变化。
2.坐标系间力和力矩的变换
假设两个坐标系固连在一个物体上,一个力和力矩作用在该物体上,并表示在一个坐标系内,这里可以同样利用虚功原理来求出相对于另一个坐标系的等效力和力矩,使他们对物体的作用效果相同。
定义F为作用在物体上的力和力矩,D是由他们引起的相对于同一参考坐标系的位移:
设下列两值分别为相对于坐标系B在物体上的力和力矩,引起的相对于坐标系B的位移:
利用虚功法(总虚功相等) :
Paul证明了:
还证明了:不需要计算相对于B坐标系的雅克比矩阵,可以直接从下式得到相对B坐标系的力和力矩。
由这些式子可以求出不同坐标系下等效的力和力矩,他们对物体的作用效果相同。
3.柔顺运动控制的基本概念和方法
柔顺坐标系的建立:
为了便于描述柔顺运动的任务及对其进行控制,需要定义一种新的正交坐标系,我们称它为柔顺坐标系,有时也称为任务坐标系或作业坐标系。在该坐标系中,任务可以被描述成沿各个坐标系的位置控制和力的控制。对于其中任何一个方向的自由度(沿三个正交轴的移动和绕三个轴的旋转),或者要求是力的控制,或者是位置的控制,不可能在同一个自由度既进行力的控制,又进行位置的控制,二者必居其一。
柔顺坐标系具有以下特点:
柔顺坐标系是正交坐标系,利用它便于描述作业任务;
一般来说,柔顺坐标系是时变的。但根据作业任务的不同,它可以是以下几种情况的一种:
柔顺坐标系相对基坐标系是固定的。如在黑板上写字时将其固定在黑板上的情况。
柔顺坐标系相对于机械手末端的工具是固定的。如钉插孔时将柔顺坐标系固定在钉上。
柔顺坐标系相对于被操作的物体时固定的。如拧螺钉,转动曲柄,关门等情况。
与任何预先定义的坐标系无固定的关系。如在黑板上写字时坐标原点岁接触点移动的情况。
自然约束和人为约束:
前面已经提到,柔顺坐标系的各个自由度或是位置控制,或是力控制,两者必居其一。这种位置和力的对偶控制关系可以通过自然约束和人为约束这两个术语来描述。自然约束时由人物的几何结构所确定的约束关系。人为约束时根据任务的要求人为给定的期望的运动和力。下面给出例子以及分析:
黑板上写字:
对于每一个自由度来说,如果其位置是自然约束,那么力必然是人为约束;若力是自然约束,那么位置必然为人为约束。因此,自然约束和人为约束的数目均等于柔顺坐标系的自由度数(一般为6)。
销钉插孔:
拧螺钉:
转动曲柄:
关门:
被动柔顺和主动柔顺
被动柔顺的概念:为了能在黑板上粉笔写字,可以在机器手默默段安装包括有弹簧和阻尼的机械装置。这样可以使机器手具有柔顺功能,这种获取柔顺功能的方式称为被动柔顺。
如图为一典型的被动柔顺装置,通常称他为RCC。该装置可以使销钉的末端成为柔顺中心。
柔顺中心是指对该点施加纯粹的力将产生该力方向的位移,在该点施加纯粹的力矩将产生改力矩方向的旋转。
被动柔顺的优缺点:响应快速,成本低廉;但是应用受到限制,主要应用于某些专用的作业业务,因而缺乏灵活性,比如RCC主要适用于销钉插孔的动作。
主动柔顺的概念:
通过控制方法来实现所需要的功能。
主动柔顺的优缺点:通过控制方法实现,具有较大的灵活性;但是由于通过软件实现,响应不如被动柔顺迅速。