自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 资源 (2)
  • 收藏
  • 关注

原创 10 概率机器人 Probabilistic Robotics 粒子滤波

文章目录1 前言2 非线性贝叶斯滤波3 蒙特卡洛积分4 重要性采样4.1 引入4.2 探索5 序列化重要性采样 (Sequential Importance Sampling (SIS))5.1 多维采样5.2 序列化重要性采样6 粒子滤波6.1 从SIS到粒子滤波6.2 Condensation Filter6.2.1 q(xk)q(x_k)q(xk​)的最优解6.2.2 q(xk)q(x_k)q(xk​)的次优解6.3 重采样(Resampling)6.4 粒子滤波7 参考文献1 前言

2020-11-03 15:21:50 912

原创 9 概率机器人 Probabilistic Robotics 二值贝叶斯滤波 占据栅格地图 occupancy grid mapping

文章目录1 前言2 二值贝叶斯滤波2.1 理论基础2.2 算法流程2.3 重要公式推导3 实例:占据栅格地图(occupancy grid mapping)4 参考文献1 前言如果通过传感器对一个环境中固定状态进行评估,该状态为二值状态(例如判断一扇门的开关状态),那么就需要用到二值贝叶斯滤波二值贝叶斯滤波的一个重要应用就是通过激光雷达建立占据栅格地图,这会在下文中做介绍2 二值贝叶斯滤波2.1 理论基础对于一个静态状态,也就是说该状态不随时间变化且没有动作作用于该状态,那么置信度函数可以

2020-10-16 10:56:28 1618 1

原创 8 概率机器人 Probabilistic Robotics 直方图滤波 离散贝叶斯滤波

文章目录1 前言2 离散贝叶斯滤波算法3 直方图滤波3.1 分解技术3.2 直方图滤波介绍3.3 重要公式推导3.4 实例4 参考文献1 前言直方图滤波适用于非线性滤波,是非参数滤波的一种直方图滤波是离散贝叶斯滤波在连续状态下的实现离散贝叶斯滤波:离散状态直方图滤波:连续状态直方图滤波的中心思想:将连续状态分段分解,在对每段做近似,再用离散贝叶斯滤波直方图滤波 = 离散分解 + 离散贝叶斯滤波离散分解有很大学问,不同的分段方法对滤波效果影响很大细分:精度高,计算量大粗分:精度

2020-10-14 10:22:20 831 1

原创 7 概率机器人 Probabilistic Robotics 扩展信息滤波算法

文章目录1 前言2 扩展信息滤波算法3 实例4 公式推导4.1 预测公式推导4.2 测量更新公式推导4.3 扩展信息滤波主要公式5 参考文献1 前言从信息滤波到扩展信息滤波这里会类比从卡尔曼滤波到扩展卡尔曼滤波公式推导也采用和之前一样的类比方法传统的高斯分布用均值μ\muμ和方差Σ\SigmaΣ表示,而信息滤波的高斯分布用信息向量ξ\xiξ和信息矩阵Ω\OmegaΩ表示, 详细介绍见信息滤波Ω=Σ−1ξ=Σ−1μ⇒Σ=Ω−1μ=Ω−1ξ注:方差信息矩阵Σ也叫做不确定度矩阵;信息矩阵Ω也

2020-10-11 16:57:11 424

原创 6 概率机器人 Probabilistic Robotics 信息滤波算法

文章目录1 前言2 信息滤波器2.1 参数规范法2.2 信息滤波算法2.3 信息滤波公式推导2.4 实例4 参考文献1 前言信息滤波与卡尔曼滤波具有相同的前提假设条件状态转移函数必须是线性函数:xt=Atxt−1+Btut+ϵtx_t = A_t x_{t-1} + B_t u_t + \epsilon_txt​=At​xt−1​+Bt​ut​+ϵt​测量函数必须是线性函数:zt=Ctxt+δtz_t = C_t x_t + \delta_tzt​=Ct​xt​+δt​初始的置信度函数服从正态

2020-10-07 12:08:36 296

原创 5 概率机器人 Probabilistic Robotics 无迹卡尔曼滤波算法

文章目录1 前言2 通过无迹变换实现线性化3 无迹卡尔曼滤波算法4 总结5 参考文献1 前言前文介绍了扩展卡尔曼滤波,它对非线性函数线性化的方法是泰勒展开式,但这不是唯一线性化的方法本文介绍的无迹卡尔曼滤波(unscented Kalman filter, UKF)是应用无迹变换进行线性化无迹变换要比泰勒展开式更加准确,所以对于非线性滤波效果更好2 通过无迹变换实现线性化这里不做公式推导和证明,仅给出算法所需无迹变换实现线性化的公式无迹变换是通过从高斯分布中提取σ\sigmaσ点(χ[i

2020-10-05 19:14:15 520

原创 4 概率机器人 Probabilistic Robotics 扩展卡尔曼滤波算法

文章目录1 前提介绍2 通过泰勒展式进行线性化3 扩展卡尔曼滤波算法(EKF)4 扩展卡尔曼滤波实例5 扩展卡尔曼滤波(EKF)公式推导5.1 预测公式推导5.2 测量更新公式推导6 扩展卡尔曼滤波的优缺点7 参考文献1 前提介绍扩展卡尔曼滤波顾名思义是卡尔曼滤波的扩展形式(卡尔曼滤波教程),但是在哪些方面进行扩展呢?这就要从卡尔曼滤波的三个前提条件入手:状态转移函数必须是线性函数:xt=Atxt−1+Btut+ϵtx_t = A_t x_{t-1} + B_t u_t + \epsilon_tx

2020-10-03 19:44:59 594 1

原创 3 概率机器人 Probabilistic Robotics 卡尔曼滤波算法

文章目录0 数学基础知识1 卡尔曼滤波所需的概率分布2 卡尔曼滤波器的算法流程3 实例4 公式推导4.1 预测公式推导4.2 测量更新公式推导4.3 总结0 数学基础知识这部分主要讲解卡尔曼滤波公式推导中所需要的数学基础,不关注具体推导过程的可以忽略这部分高斯滤波器是连续空间中最早的可处理的贝叶斯滤波器高斯滤波器的基本思想:将贝叶斯滤波器的置信度用多元正态分布表示:bel(x)=p(x)∼N(μ,Σ)bel(x)=p(x) \sim N(\mu, \Sigma)bel(x)=p(x)∼N(μ,Σ)

2020-09-30 15:15:26 627

原创 2 概率机器人 Probabilistic Robotics 贝叶斯滤波算法

文章目录0 数学基础知识1 贝叶斯滤波算法的公式推导2 贝叶斯滤波算法的流程3 实例4 分析0 数学基础知识随机变量XXX的值为xtx_txt​: p(X=xt)p(X=x_t)p(X=xt​) 简写为p(xt)p(x_t)p(xt​)测量值zzz:zt1:t2=zt1,zt1+1,zt1+2,⋯ ,zt2z_{t_1:t_2} = z_{t_1}, z_{t_1+1}, z_{t_1+2}, \cdots, z_{t_2}zt1​:t2​​=zt1​​,zt1​+1​,zt1​+2​,⋯,z

2020-09-27 15:06:06 589 2

原创 1 概率机器人 Probabilistic Robotics 概率基本概念

文章目录基本概念参考文章基本概念本片博文为后续博文做基础铺垫,给出符号和基本公式的定义:随机变量XXX的值为xxx: p(X=x)p(X=x)p(X=x) 简写为p(x)p(x)p(x)∑xp(x)=1         离散∫p(x)dx=1       连续(1.1)\sum_xp(x) = 1 ~~~~~~~~~\text{离散}\\

2020-09-27 09:04:13 534

原创 0 概率机器人 Probabilistic Robotics 2,3,4章解析

《概率机器人》的2,3,4章解析本人对《概率机器人》2,3,4章做一个系统化的解析,包括里面的数学公式推导和自己理解,希望对大家有所帮助。中英版教材下载链接如下,仅作为学习使用,不准用以任何商业用途:概率基本概念:贝叶斯滤波:更新中。。。...

2020-09-27 08:46:22 514

原创 MODERN ROBOTICS MECHANICS 第五章 Velocity Kinematics and Statics(速度运动学与静力学)

这一章主要讲解当给定关节角度和关节角速度,求末端执行器的速度 主要可以分为以下几个部分1 雅各比矩阵雅各比矩阵是个数学上的概念,他是这样定义的:已知雅各比矩阵实际上是个偏微分矩阵:雅各比矩阵的第i列就是关节i对末端执行器速度的影响2 雅各比矩阵在固定坐标系{s}中的表示线性方程的一些性质:雅各比矩阵的推倒:对雅各比矩阵的理解:雅各比矩阵的第i列向量是当其他...

2019-03-19 17:43:16 1137 4

原创 MODERN ROBOTICS MECHANICS 第四章 Forward Kinematics(正运动学)

正运动学就是已知各关节转动角度,求末端执行器相对于基座的变换矩阵T 有两种求正运动学的方法: Denavit-Hartenberg parameters(D-H参数) Product of Exponentials formula(PoE方法) 这里介绍比较方便的PoE方法1 Product of Exponentials Formula1.1 第一个方法:基于固定坐标系的旋量...

2019-03-16 09:05:42 1353

原创 MODERN ROBOTICS MECHANICS 第三章 Rigid-Body Motions(刚体运动)

这一章非常重要,内容有些多,是后续章节的基础刚体的速度由表示(twist):3个角速度,3个角速度 刚体的受力由表示(wrench):3个力矩,3个力 free vector:只有长度和方向的向量,例如线速度向量就是自由向量 space frame{s}:可以理解为基座上的坐标系,定系,也叫fixed frame boby frame{b}:可以理解为末端执行器上的坐标系,动系...

2019-03-14 16:50:04 2013 7

原创 MODERN ROBOTICS MECHANICS 第二章 Configuration Space (构型空间)

《MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL 》这本书第二章题目是Configuration Space,主要讲的以下9个部分,总结的不好,大家见谅。。。(如果没有这本书,请看我之前的博客,已经分享到网盘)一机器人的定义机器人是由连杆通过各种类型的关节连接构造而成,这个连杆通常被模型化为刚体 末端执行器,如爪子,通常被安装在机器人的...

2019-03-10 17:26:50 2314 3

原创 UR机械臂正逆运动学求解

最近有个任务:求解UR机械臂正逆运动学,在网上参考了一下大家的求解办法,众说纷纭,其中有些朋友求解过程非常常规,但是最后求解的8组解,只有4组可用。在这里我介绍一个可以求解8组解析解的方法,供大家参考。 以UR5机械臂结构和尺寸参数为例进行正逆运动学求解,下图分别是UR5结构图和标准DH系参数:1. 正运动学求解正运动学是已知关节六个角度求变换矩...

2018-07-21 16:14:10 75456 76

原创 点到点轨迹规划——三次曲线,五次曲线,梯形曲线,S曲线

一. 简介点到点的轨迹规划算法可以理解为在规定的时间T内,从已知起始点运动到末尾点的方法。这里引入中间变量s(t),它是时间的函数,定义域为[0,T],值域为[0,1],s与的关系见下面公式。这个公式不难理解,当s=0时,;当s=1时,。对t求导是速度,即:对t求二阶导是加速度,即所以由于和是已知的,所以速度和加速度随时间的变化取决于...

2018-07-14 19:44:55 63484 26

原创 MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL

       本人进入机器人领域时间不长,但是有一些心得想与大家分享。       对于刚刚入门的学生来说,(美)John J. Craig写的《Introduction to Robotics Mechanics and Control》 ,强烈推荐,本人建议看英文原版,如果感觉英文有些吃力,目前有翻译版《机器人学导论》第三版  ,已分享网盘,链接见下,希望能给初入机器人领域的学子一些帮助。...

2018-07-14 14:15:39 6558 21

扩展卡尔曼滤波_无迹卡尔曼滤波_扩展信息滤波_l粒子滤波算法.rar

扩展卡尔曼滤波_无迹卡尔曼滤波_扩展信息滤波_l粒子滤波算法.rar

2020-11-03

点到点轨迹规划——自适应S曲线

点到点轨迹规划的S曲线,已知起始位置、终止位置、最大速度、最大加速度、总的运动时间、这5个参数,自动计算出运动规划曲线(若输入的参数不合适,代码可以自行计算出合适参数)

2018-09-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除