首先把我看的教程放上来,大家可以配合着教程看→超链接,请点击
配置tensorflow-gpu真的搞心态,折腾了一天,总算搞定了,下面列出我踩坑的地方:
1.新下载的anaconda配置的是python3.10, 但是tensorflow写着只支持python3.6-3.9,所以我创建一个python3.9的新环境,后续tensorflow就安装在python3.9的环境里。点击Environments列表下的create就可以创建新环境了。
2.使用默认源下载。其实默认源下载也很快了,一开始我用清华镜像源下载,发现下载的库有缺失,import的时候老是报错 name xxx is not defined。后面卸载了,换成默认源重新下载,就好了。
3.虽然tensorflow2.0宣称把cpu和gpu版本合并在一起了,但是大家下载的时候还是要下载tensorflow-gpu并指定版本,以我自己的配置过程为例子,我的显卡最高可以支持CUDA11.4,所以我就安装了tensorflow能够支持的最高版本11.2,对应的tensorflow-gpu版本就是2.6.0
pip install tensorflow-gpu==2.6.0
4.cuDNN、CUDA与tensorflow版本要对应上。
因为是先下载CUDA,后面下载cuDNN的时候就忘记了tensorflow对cuDNN的版本也有要求,乱下了一个,tensorflow不能成功运行。
替换cuDNN的方法很简单,下一个正确版本的,然后复制到CUDA对应文件夹里,全部替换掉就好了。
5.cuDNN和CUDA下载后记得手动检查系统环境有没有自动添加,没有的话需要手动添加,具体自行百度,我把我的环境变量放上来,大家可以看看,我的有重复了,但是不影响使用,就没删除了。路径里带GPU的就是我们需要添加的环境变量。
6.protobuf的版本不能大于3.20.x,这是我import tensorflow时报错的提示,因此我卸载了protobuf,重新安装了3.20.1版本的protobuf。
卸载推荐进入python3.9环境的terminal,直接输入pip uninstall protobuf 进行卸载
pip uninstall protobuf #卸载指令
pip install protobuf==3.20.1 #安装指令
#注意,以上两条指令不是在python环境下输入,而是conda环境
点击anaconda页面中py3.9环境的绿色箭头,选择open with terminal就可以进入conda环境。
7.检查tensorflow是否可以用GPU,打开python环境输入以下指令
import tensorflow
tensorflow.test.is_gpu_available()
#输出true就是成功了