一、AI狂奔的两年——从文本到图片视频
AI应用在这两年几乎是每年一个里程碑,每几个月就诞生一个爆款产品,在22、23年主流的是文本生成,那时候很多有图像生成功能的产品都是短暂体验就要付费,到了24年各包括图片等文件格式百花齐放,算力资源过剩和AI初创企业竞争这一局面又利好我们普通使用者。
于是今天我来分享一个实现ai生成文件的思路供大家参考【有很多我不知道的方式,也请谅解】
二、为了实现AI全链路工作流,我做了这些思考
现在市面上有很多AI提升效率的工具,ai生成思维导图、演示文稿(ppt)、原型设计稿、Word文档、Excel表格、代码、论文查重,甚至直接做个网站app部署发布上去,这样带来巨大生产力的背后是无数公司降本增效,大量员工被毕业,所以在未来,如果你不会用AI实现生产力的提升,或者懂得这背后的原理去做操纵它的人,那么很容易会被时代的浪潮吞噬。
三、技术 “内核” 曝光
其实在做这些生成工具的时候,我们肯定会去想怎么去搭建这么一条生产链路,但其实这整个过程很简单。
那就是——用户在输入框输入需求,服务端将传输过来的需求文字喂给AI,喂的同时做提示词处理,规范化输出内容,然后调用各种生产服务实现规范化内容到预期的形状(你想要的各种内容形式)
四、效率飞升的魔法时刻
我来实现一下用上面的过程生成excel文件
(1) 🧮 技术选型
- AI服务调用国内最轻量目前比较火的Deepseek的api
- 服务端用koa做个单文件服务(不做接口等各种设计了,后续涉及到精确输出内容再做架构)
- 展示用html单文件做交互演示,不可能只给人看json返回
(2)🌟 服务端拆解
好的,我们来逐段分析这段代码,并将其拆解为几个关键部分:
1. 导入模块
import Koa from 'koa';
import bodyParser from 'koa-bodyparser';
import ExcelJS from 'exceljs';
import OpenAI from 'openai';
import serve from 'koa-static';
import cors from '@koa/cors';
import path from 'path';
import {
fileURLToPath } from 'url';
- Koa: 用于创建 Web 服务器。
- koa-bodyparser: 用于解析 HTTP 请求中的 body。
- ExcelJS: 用于创建 Excel 文件,作用是sdk,实现的核心。
- OpenAI: 用于调用 OpenAI API,生成文本。
- koa-static: 用于提供静态文件服务。
- cors: 用于配置跨域资源共享。
- path 和 fileURLToPath: 用于处理文件路径。
2. 创建 Koa 应用
const __dirname = path.dirname(fileURLToPath(import.meta.url))