【图像处理】噪声模型和降噪(Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在数字图像处理中,噪声会降低图像的质量,使得图像变得模糊、失真或者影响图像的细节和清晰度。对于不同类型的噪声,需要采取相应的处理方法来降低其对图像质量的影响。常见的处理方法包括滤波技术,如均值滤波、中值滤波、高斯滤波等,以及图像增强技术,如直方图均衡化、小波变换等。通过合适的处理方法,可以有效减少噪声对图像的影响,从而获得更清晰、更真实的图像信息。在实际应用中,理解和处理噪声是数字图像处理中不可或缺的重要环节,可以提高图像的质量和准确性,满足各种应用需求。

📚2 运行结果

主函数部分代码:

clc; clear;
%% Read the original image
fig_original = double(imread('data/Circuit.tif')) / 255;
imwrite(fig_original, 'data/circuit.png');
[h, w] = size(fig_original);

%% Simulate different noises
figure('Name', 'Noises');
% Gaussian noise
subplot(2, 3, 1);
histogram(gaussian_noise(100, 100, 1, 0), 100);
title('Gaussian noise, z = 0, \sigma^2 = 1');
% Rayleigh noise
subplot(2, 3, 2);
histogram(rayleigh_noise(100, 100, 0, 1), 100);
title('Rayleigh noise, a = 0, b = 1');
% Erlang (gamma) noise
subplot(2, 3, 3);
histogram(gamma_noise(100, 100, 1, 2), 100);
title('Erlang noise, a = 1, b = 2');
% Exponential noise
subplot(2, 3, 4);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]黄梦洁,叶磊,易凡骁等.面向机器人控制的直接视觉伺服技术发展综述[J/OL].控制理论与应用:1-20[2024-03-11].http://kns.cnki.net/kcms/detail/44.1240.TP.20240229.2228.050.html.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值