👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文使用2DOF系统的人工神经网络(ANN)进行高斯白噪声的系统识别。神经网络由以下层组成:
-输入层:2 个节点用于当前步骤的力,2 个节点用于使用开环反馈
的上一步位移 -隐藏层:2 个节点用于两个内部状态,因为 2DOF 系统
有 2 种模式 -输出层:2 个节点用于位移
在训练并获得预测输出后,将网络转换为闭环网络并再次训练(闭环网络使用上一步的预测反馈而不是实际反馈)。将开环和闭环网络的预测输出与图中的实际输出进行比较。它表明开环网络比闭环网络更准确,因为上一步的实际输出的可用性。
📚2 运行结果
部分代码:
n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);
Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn)); % damping ratio
wd=wn.*sqrt(1-zeta.^2);
fn=Vectors'*f; % generalized input force matrix
t=[0:dt:dt*steps-dt];
for i=1:1:n
h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
qq=conv(fn(i,:),h(i,:))*dt;
qqd=conv(fn(i,:),hd(i,:))*dt;
qqdd=conv(fn(i,:),hdd(i,:))*dt;
q(i,:)=qq(1:steps); % modal displacement
qd(i,:)=qqd(1:steps); % modal velocity
qdd(i,:)=qqdd(1:steps); % modal acceleration
end
x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity
%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.0*randn(2,10000);
a2=a+0.0*randn(2,10000);
v2=v+0.0*randn(2,10000);
x2=x+0.0*randn(2,10000);
%Plot displacement of first floor without and with noise
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]靳智博,赵忠凯.基于高斯白噪声训练的转发式干扰机自干扰对消技术[J].电子信息对抗技术,2022,37(06):60-65.
[2]Ayad Al-Rumaithi (2023). System Identification using ANN.