【负荷预测】【没发表过论文】基于VMD-CNN-BiLSTM-Attention的负荷预测研究(Python代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-BiLSTM-Attention的负荷预测研究文档

一、引言

负荷预测是电力系统中一项至关重要的任务,它对于电力系统的规划、调度和运维具有重要意义。然而,由于负荷数据往往呈现出高度的非线性和非平稳性,传统的预测方法往往难以达到理想的预测效果。因此,本研究旨在提出一种基于变分模态分解(VMD)、卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的负荷预测模型,以期提高预测精度和鲁棒性。

二、文献综述

近年来,随着人工智能技术的快速发展,深度学习在负荷预测领域得到了广泛应用。VMD作为一种新兴的信号处理方法,能够有效地将复杂信号分解为多个具有单一模态的分量,为后续的特征提取提供了便利。CNN以其强大的特征提取能力在图像识别等领域取得了显著成效,而将其应用于负荷数据的空间特征提取也具有一定的潜力。BiLSTM则能够捕捉时间序列数据中的长期依赖关系,同时考虑前后文信息。Attention机制的引入则能够使得模型更加关注重要的特征或时间段,从而提高预测精度。

三、研究方法

  1. 数据预处理
    • 数据收集:从电力系统中获取历史负荷数据及相关影响因素(如天气、节假日等)。
    • 数据清洗:处理缺失值、异常值等问题,确保数据的完整性和准确性。
    • 数据归一化:将不同量纲的数据转换到同一尺度,以便于后续处理。
  2. 特征提取
    • 使用VMD对负荷数据进行分解,得到多个具有单一模态的分量。
    • 对每个VMD分量进行特征工程,提取出对预测有用的特征。
  3. 模型构建
    • CNN层:构建卷积神经网络层,用于捕捉每个VMD分量的局部特征,如波动模式和趋势。
    • BiLSTM层:在CNN层之后接入双向长短期记忆网络层,利用其双向性捕捉时间序列数据中的长期依赖关系。
    • Attention层:在BiLSTM层之后引入注意力机制层,动态调整不同时间段或特征的重要性。
  4. 模型训练与优化
    • 选择合适的损失函数(如均方误差MSE)和优化算法(如Adam优化器)。
    • 使用交叉验证等方法避免过拟合,同时调整网络结构和超参数以优化模型性能。
  5. 结果评估
    • 使用多种评估指标(如MSE、RMSE、MAE等)对预测结果进行评估。
    • 与其他常用预测模型(如单一CNN、单一BiLSTM等)进行比较,验证所提方法的有效性。

四、实验结果与分析

(此部分需根据实际实验数据填写)

  1. 模型性能评估:展示不同评估指标下的预测结果,分析模型的预测精度和稳定性。
  2. 对比实验:将所提模型与其他常用预测模型进行对比,展示所提模型在预测精度上的优势。
  3. 案例分析:选择具体案例进行详细分析,展示模型在不同场景下的应用效果。

五、讨论

  1. 模型优势:分析所提模型在特征提取、时间依赖关系捕捉和重要性调整等方面的优势。
  2. 局限性:讨论模型在数据依赖性、计算复杂度等方面的局限性。
  3. 未来研究方向:提出可能的改进方向和未来研究的展望。

六、结论

本研究提出了一种基于VMD-CNN-BiLSTM-Attention的负荷预测模型,并通过实验验证了其有效性。该模型能够有效地提取负荷数据中的多尺度特征,并捕捉时间序列数据中的长期依赖关系,同时利用注意力机制动态调整不同特征的重要性。实验结果表明,所提模型在预测精度上优于传统预测方法,为电力系统的负荷预测提供了一种新的思路和方法。

📚2 运行结果

部分代码:、

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张鲁一航,杨彦明,陈永展,等.基于VMD-CNN-BiLSTM的变工况涡扇发动机剩余寿命预测[J].北京航空航天大学学报, 2024.DOI:10.13700/j.bh.1001-5965.2021.0051.

[2]赵征,周孜钰,南宏钢.基于VMD的CNN-BiLSTM超短期风电功率多步区间预测[J].华北电力大学学报, 2022(004):049.

[3]杨进昆,党建武,杨景玉,等.基于时序分析及CNN-BiLSTM-AM的阶跃型滑坡位移预测[J].国外电子测量技术, 2024, 43(1):126-134.

[4]邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法[J].[2024-09-09].DOI:10.12677/ORF.2024.141067.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值