基于多目标优化算法的 LCOE电力成本的敏感性分析(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景

二、相关概念及数学模型

三、算例及运行结果

(一)研究案例描述

(二)变量设定及分析

(三)多目标优化算法运行结果

四、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于多目标优化算法的 LCOE 电力成本的敏感性分析

摘要:在发电项目的财务评估中,平准化度电成本(LCOE)被用作比较发电技术的工具;然而,它的一个弱点是对用于计算的能源变量存量的敏感性。在这方面,每位作者在进行敏感性分析时采用不同的标准和方法,其中包括蒙特卡洛方法、马科维茨方法、条件风险价值(CVaR)、扩展的莱维模型等。在本研究中,提出了一种基于平准化度电成本计算的多目标优化技术的敏感性分析方法。对于定义为敏感性相关的每个变量,获得了帕累托前沿。该优化问题模型应用于所提出的案例研究中,以验证和分析结果。结果表明,帕累托前沿方法对于LCOE的敏感性分析非常有用,提供了一种额外的工具。

1980 年代和 1990 年代世界多个国家因垄断和寡头垄断模式的结构性失败而经历的能源危机,创造了电力市场自由化的全球趋势,以利用所提供的优势和好处通过竞争模型。在此背景下,发展中国家和发达国家政府对其立法进行了一系列改革,以实施扩大私人投资参与的战略,特别是在发电领域。政府和投资者必须掌握代表发电项目生命周期的成本信息,以及对此类项目的技术和财务评估的稳健指标的分析,其中考虑到某些变量变化的敏感性。高度不确定性,可能会影响项目的成本,从而影响其可行性。这些信息和指标有助于在发电园区的规划阶段做出决策。在学术文献中常用来比较不同类型的通信技术的指标中发电,确定产生 MWh 的成本或分析不同因素在其计算中的作用,有平准化电力成本 (LCOE),分析发电期间的成本总和发电源的使用寿命除以一段时间内产生的电能总和 [1] [2] [3]。该指标以美元/兆瓦时 [USD/MWh] 表示,可以解释为投资者收回所有运营成本以及资本成本所需的最低收入 [4]。 LCOE 的优势之一是可以用于比较具有不同使用寿命、建设时间、运营成本 (OpEx)、工厂因素、投资成本 (CapEx) 和/或费率折扣(加权平均资本成本 - WACC)根据每个国家的实际情况。事实上,在某些国家,政府支持新的可再生能源技术的政策是基于 LCOE 估计的,并且为了能够对项目进行适当的估值,它们为投资者提供了一些用于计算的输入数据 [5]。

在发电项目财务评估的背景下,电力平准化成本(LCOE)用作比较发电技术的工具;然而,它的一个弱点是它对计算所输入的能量变量存量的敏感性。从这个意义上说,每个作者使用不同的标准和方法进行敏感性分析,其中有:蒙特卡罗方法、马科维茨、CVaR、扩展 Lévy 模型等。在本文中,基于 LCOE 的计算,提出了应用多目标优化技术的敏感性分析。对于定义为与敏感性相关的每个变量,都获得了帕累托前沿。将优化问题模型应用于所提出的研究案例,以对结果进行验证和分析。结果表明,Pareto 前沿方法对于 LCOE 的敏感性分析非常有用,提供了一个很棒的工具。

一、研究背景

20 世纪 80 年代和 90 年代,世界多个国家因垄断和寡头垄断模式的结构性失败而经历能源危机,这促使电力市场自由化成为全球趋势,旨在通过竞争模型获取优势和好处。在发电项目中,政府和投资者需要掌握代表发电项目生命周期的成本信息,以及对项目进行技术和财务评估的稳健指标分析,同时要考虑某些变量变化的敏感性,因为高度不确定性可能影响项目成本及可行性。这些信息和指标有助于发电园区规划阶段的决策。

在学术文献中,平准化电力成本(LCOE)常被用于比较不同发电技术,分析发电期间成本总和与发电源使用寿命内产生电能总和的关系。LCOE 以美元/兆瓦时(USD/MWh)表示,可解释为投资者收回所有运营成本以及资本成本所需的最低收入。LCOE 的优势在于可用于比较不同使用寿命、建设时间、运营成本(OpEx)、工厂因素、投资成本(CapEx)和/或费率折扣(加权平均资本成本 - WACC)的发电项目。在一些国家,政府支持新可再生能源技术的政策基于 LCOE 估计,并为投资者提供计算所需的输入数据。然而,LCOE 的一个弱点是对计算所输入的能量变量存量较为敏感。因此,不同作者采用多种方法进行敏感性分析,如蒙特卡罗方法、马科维茨、CVaR、扩展 Lévy 模型等。本文基于 LCOE 的计算,提出应用多目标优化技术进行敏感性分析。

二、相关概念及数学模型

三、算例及运行结果

(一)研究案例描述

选取某一具体的发电项目组合作为研究案例,包含多种发电技术,如水电、热电、光伏、风能等。确定各发电技术的相关参数,如投资成本、运营成本、发电量、项目寿命期等,并设定贴现率等经济参数。

(二)变量设定及分析

定义与 LCOE 敏感性相关的变量,如工厂因子、投资成本、运营成本等。针对每个变量,利用多目标优化算法进行分析。

以工厂因子为例,分别对不同发电技术在不同工厂因子取值下计算 LCOE。在电厂系数处于 0.5 和 0.9 之间时,发现水电和热电等技术的 LCOE 敏感性较低,即价格不会因该参数变化而剧烈波动;而光伏、风能等技术在管理植物因子低于 0.5 时,其 LCOE 会因植物因子变化而产生更明显变化。

(三)多目标优化算法运行结果

通过 Matlab 编程实现多目标优化算法,并应用于上述研究案例。对于每个与敏感性相关的变量,均成功获得帕累托前沿。从帕累托前沿结果可以清晰看出不同目标之间的权衡关系,例如在降低 LCOE 与其他相关目标(如投资成本最小化、发电量最大化等)之间的平衡。这为决策者提供了丰富的信息,有助于在不同情况下做出更合理的决策。

四、结论

在电厂系数的情况下,对于 0.5 和 0.9 之间的值,LCOE 的敏感性较低,即水电和热电等技术的价格不会因为该参数的变化而发生剧烈变化,不像光伏、风能等技术在管理植物因子低于 0.5 时,其 LCOE 确实会因植物因子的变化而遭受更明显的变化。在发电项目财务评估的背景下,平准化电力成本(平准化成本)被用作比较发电技术的工具;然而,它的弱点之一是它对用于计算的能量变量输入的存量的敏感性。从这个意义上说,每个作者都使用不同的标准和方法来进行敏感性分析,其中包括:蒙特卡洛方法,Markowitz,CVaR,扩展Lévy模型等。本文基于平准化度电成本的计算,提出一种应用多目标优化技术的灵敏度分析方法。帕累托前沿是针对定义为与灵敏度相关的每个变量获得的。将优化问题模型应用于所提研究案例,用于结果的验证和分析。

本文基于多目标优化算法对 LCOE 电力成本进行敏感性分析,通过构建多目标优化模型并应用于具体研究案例,得出以下结论:

  1. Pareto 前沿方法对于 LCOE 的敏感性分析非常有用,为决策者提供了一个有效的工具。通过帕累托前沿,可以清晰看到不同目标之间的权衡关系,帮助决策者在多个相互冲突的目标之间做出更合理的选择。
  2. 在电厂系数方面,当处于 0.5 和 0.9 之间时,LCOE 的敏感性较低,水电和热电等技术受该参数变化影响较小;而光伏、风能等技术在管理植物因子低于 0.5 时,LCOE 对植物因子变化更为敏感。这为发电项目的规划和运营提供了重要参考,有助于合理安排不同发电技术的比例和运行策略。
  3. 本研究提出的基于多目标优化算法的敏感性分析方法,丰富了 LCOE 敏感性分析的手段和方法体系,为进一步深入研究发电项目的成本效益和风险评估提供了新的思路和方法。

未来的研究可以进一步拓展变量范围,考虑更多复杂因素对 LCOE 的影响,同时优化多目标优化算法,提高分析结果的准确性和可靠性,为电力行业的决策提供更有力的支持。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]鲁正,陈芸菲,孙炜.基于优化LCOE的光伏平价上网可行性分析[J].太阳能学报, 2021, 42(8):6.

[2]敬朝文,李进,黄忠源.天然气联合循环电厂CO2捕获整体性能及成本敏感性分析[J].北京交通大学学报, 2018, 42(1):62-68.

🌈Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值