YOLO学习笔记 | YOLOv8 全流程训练步骤详解(2025年4月更新)

### 使用 YOLOv8 进行模型训练的详细步骤 YOLOv8 是 Ultralytics 提供的一个最新版本的目标检测框架,支持多种任务(分类、目标检测、分割等)。以下是使用 YOLOv8 进行模型训练的具体方法。 #### 1. 安装依赖库 为了使用 YOLOv8,需要先安装 `ultralytics` 库。可以通过以下命令完成安装: ```bash pip install ultralytics ``` 此操作会自动下载并安装所需的全部依赖项[^3]。 #### 2. 准备数据集 YOLOv8 支持 COCO 和 YAML 格式的配置文件来描述数据集结构。假设我们有一个自定义的数据集,其目录结构如下: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 创建一个名为 `data.yaml` 的文件,用于指定数据集路径和其他参数: ```yaml train: dataset/images/train val: dataset/images/val nc: 3 # 类别数量 names: ['class1', 'class2', 'class3'] # 类别名称列表 ``` #### 3. 初始化模型 通过加载预定义的 YOLOv8 模型权重初始化模型。可以选择官方提供的预训练权重或从头开始训练。 ```python from ultralytics import YOLO # 加载预训练模型 (例如 yolov8n.pt 表示 nano 版本) model = YOLO('yolov8n.pt') ``` 如果要从零开始训练,则可以传递模型架构而不带权重: ```python model = YOLO('yolov8n.yaml') # 或其他变体如 yolov8s, yolov8m 等 ``` #### 4. 配置超参数 YOLOv8 可以通过修改默认配置文件来自定义训练过程中的超参数。这些设置通常存储在一个 `.yaml` 文件中,或者可以直接在调用时覆盖某些选项。常见的可调整参数包括学习(`lr0`)、批量大小 (`batch_size`)、最大轮数 (`epochs`) 等。 例如,在终端运行以下命令即可快速启动训练,并覆盖部分参数: ```bash yolo task=detect mode=train model=yolov8n.pt data=data.yaml epochs=100 imgsz=640 ``` 也可以通过 Python 脚本来实现相同功能: ```python results = model.train( data='data.yaml', epochs=100, batch=16, imgsz=640, name='custom_experiment' ) ``` #### 5. 开始训练 当一切准备就绪后,执行上述代码片段便可正式进入训练阶段。训练过程中会实时保存最佳检查点以及最终模型到指定目录下,默认位于 `runs/detect/custom_experiment` 中。 #### 6. 测试与验证 训练完成后,可以利用测试集评估模型性能: ```python metrics = model.val(data='data.yaml') print(metrics) ``` 还可以直接可视化预测效果: ```python test_image_path = 'path/to/test/image.jpg' predictions = model(test_image_path) predictions.plot(show=True, save=True) ``` --- ### 示例代码总结 完整的流程可以用下面这段脚本概括: ```python from ultralytics import YOLO # 步骤 1:加载模型 model = YOLO('yolov8n.pt') # 步骤 2:训练模型 results = model.train( data='data.yaml', # 数据集配置文件路径 epochs=100, # 总迭代次数 batch=16, # 批量大小 imgsz=640 # 输入图像尺寸 ) # 步骤 3:验证模型 metrics = model.val() # 步骤 4:推理单张图片 test_image_path = 'path/to/test/image.jpg' predictions = model(test_image_path) predictions.plot(show=True, save=True) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值