单纯形法求解线性规划

3 篇文章 0 订阅
3 篇文章 0 订阅

 预备知识:

定义1.线段:

x_{1},x_{2}\in R^{n},x_{1} \neq x_{2},点集\begin{Bmatrix} {\lambda x_{1}+(1-\lambda)x_{2}|0\leq \lambda\leq1} \end{Bmatrix}称为闭线段,记为[x_{1},x_{2}];又点集\begin{Bmatrix} {\lambda x_{1}+(1-\lambda)x_{2}|0< \lambda<1} \end{Bmatrix}称为开线段,记作(x_{1},x_{2})

定义2.凸集:

C \in R^{n},如果对于任意x_{1},x_{2}\in C,以及0\leq \lambda \leq 1,都有\lambda x_{1} + (1- \lambda)x_{2} \in C,则称C为凸集。

例:

(1)空集,全集,单点集均为凸集。 

(2)若x_{1},x_{2} \in R^{n},x_{1}\neq x_{2},闭线段[x_{1},x_{2}]与开线段(x_{1},x_{2})都为凸集。

通过引入松弛变量,我们可以将线性不等式转化为标准的线性等式求解。

在我们学习单纯形法之前,很不幸的事情是,在这个世界上,很多事情是非线性的,单纯形法有其局限性,就是需要在严格的线性约束才才能够使用。

定理:线性规划的可行域是多边形,线性规划的绝大多数问题的最优解在其顶点取得。

由以上定理,我们可以通过单纯形法来迭代求解最优值。

单纯形算法思想如下:

第一步:找到一个可行解(极点);

第二步:计算该点的判据函数;

第三步:若无法改进,退出;

第四步:否则选择一条棱, 找到另一可行解(极点);

回到第二步。 

本节偏向数学性,感觉内容过于理论,无法进行拓展,留待后续学习一并总结。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周好蠢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值