人工智能基础

图搜索与问题求解(人工智能核心技术之一)

搜索即推理

隐式图搜索是利用局部性知识构造全局性答案

启发性搜索

graph of thoughts:solving...

基于图搜索的方式进行大模型...

大模型和神经网络结合/结合起来 基于知识图谱(利用图搜索)

chatDB——清华 用数据库...

算法

状态图知识表示

回溯法(堆栈实现)、图(DFS、BFS)

八数码:比较选择差异最小的状态

有向图->状态空间图

状态(节点)状态空间三元组<S,F,G>

迷宫问题的状态图表示:

操作用序偶对

显式状态图(可以罗列出全部节点和边)

 修道士和野人过河左岸1初始状态(3,3,1)、终态(m,c,b)()非法状态,约束条件,

梵塔问题:

隐式:启发式搜索,图是方法,问题求解搜索

重排九宫格:

旅行商问题:路径问题;

抽象出数据类型。n元组

树搜索/线搜索

盲目搜索/启发搜索,定义启发函数(全局择优、局部...)

搜索算法:

closed表:记录考察过的节点

open表:

广度优先搜索:使用队列

open:ABCDEFGHIJKLLM...把open表当成队列使用。

closed:ABCDEF...

算法描述:

结束条件:

完备,可以找到最优解

搜索策略和文艺无关,具有通用性

搜索效率低

深度优先

open:

closed:

两种算法的 区别 open怎么用,是队列还是堆栈的使用

深度限制不合理,可能找不到解/找不到最优解

记录值、操作、双亲(确定是从哪过来的)、层次、定义节点类型、实现BFS、DFS 使用堆栈队列 用python的堆栈队列的库直接调用

状态图搜索

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值