图搜索与问题求解(人工智能核心技术之一)
搜索即推理
隐式图搜索是利用局部性知识构造全局性答案
启发性搜索
graph of thoughts:solving...
基于图搜索的方式进行大模型...
大模型和神经网络结合/结合起来 基于知识图谱(利用图搜索)
chatDB——清华 用数据库...
算法
状态图知识表示
回溯法(堆栈实现)、图(DFS、BFS)
八数码:比较选择差异最小的状态
有向图->状态空间图
状态(节点)状态空间三元组<S,F,G>
迷宫问题的状态图表示:
操作用序偶对
显式状态图(可以罗列出全部节点和边)
修道士和野人过河左岸1初始状态(3,3,1)、终态(m,c,b)()非法状态,约束条件,
梵塔问题:
隐式:启发式搜索,图是方法,问题求解搜索
重排九宫格:
旅行商问题:路径问题;
抽象出数据类型。n元组
树搜索/线搜索
盲目搜索/启发搜索,定义启发函数(全局择优、局部...)
搜索算法:
closed表:记录考察过的节点
open表:
广度优先搜索:使用队列
open:ABCDEFGHIJKLLM...把open表当成队列使用。
closed:ABCDEF...
算法描述:
结束条件:
完备,可以找到最优解
搜索策略和文艺无关,具有通用性
搜索效率低
深度优先
open:
closed:
两种算法的 区别 open怎么用,是队列还是堆栈的使用
深度限制不合理,可能找不到解/找不到最优解
记录值、操作、双亲(确定是从哪过来的)、层次、定义节点类型、实现BFS、DFS 使用堆栈队列 用python的堆栈队列的库直接调用
状态图搜索