第191题|幂级数求和(一)|武忠祥老师每日一题 5月16日

解题思路:求收敛域,先求收敛半径,得出收敛区间,再考查两个端点。

第一步:先求收敛半径,得出收敛区间,考查两个端点是否发散得出收敛域。

求收敛半径这里有两个方法:

①公式一

②公式二

\rho =\lim_{n\rightarrow \infty } \sqrt[n]{|a_{n}|}=\sqrt[n]{2n+1},

那么怎么求这个极限呢?我们有两种方法:

第一种:我们想到:\lim_{n \to\infty }\sqrt[n]{n}=\lim_{n \to\infty }n^{\frac{1}{n}}=1,可以转换成类似的式子:

即:\lim_{n \to\infty }\sqrt[n]{2n+1}=\lim_{n \to\infty }(2n+1)^{\frac{1}{2n+1}\cdot \frac{2n+1}{n}}=1;

第二种:我们同样可以利用夹闭准则:n趋于无穷时:

1<\sqrt[n]{2n+1}<\sqrt[n]{3n}=1

,收敛域为(-1,1)且x为正负1时,幂级数是发散的,所以收敛域为(-1,1).

第二步:幂级数求和

幂级数求和我们同样也是利用现有公式;

这里我们显然要用到这个公式:\sum_{n=0 }^{\infty }x^{n}=\frac{1}{1-x},

注意这里\sum_{n=0}^{\infty }2nx^{n}不能写成2x\sum_{n=0}^{\infty }nx^{n-1},因为n从0开始的话,n=0,就会出现\frac{1}{x},而x=0时是没有意义的。所以不能写成这种形式,要写成 2x[\sum_{n=1}^{\infty }x^{n}]'而为什么后面我们求导用的导数是n=0呢,因为公式用的是n=0,并且n=1和n=0时幂级数求导后的值是相等的,所以我们可以把2x[\sum_{n=1}^{\infty }x^{n}]'写成2x[\sum_{n=0}^{\infty }x^{n}]' 并利用公式解题。

总结知识点:

①.收敛半径公式:⑤⑥

  ,    

.求\sqrt[n]{2n+1}的极限

第一种:我们想到:\lim_{n \to\infty }\sqrt[n]{n}=\lim_{n \to\infty }n^{\frac{1}{n}}=1,可以转换成类似的式子:

即:\lim_{n \to\infty }\sqrt[n]{2n+1}=\lim_{n \to\infty }(2n+1)^{\frac{1}{2n+1}\cdot \frac{2n+1}{n}}=1;

第二种:我们同样可以利用夹闭准则:n趋于无穷时:

1<\sqrt[n]{2n+1}<\sqrt[n]{3n}=1

③.幂级数求和公式

\sum_{n=0 }^{\infty }x^{n}=\frac{1}{1-x}

.\sum_{n=0}^{\infty }nx^{n}不能写成x\sum_{n=0}^{\infty }nx^{n-1},因为n从0开始的话,n=0,就会出现\frac{1}{x},而x=0时是没有意义的。所以不能写成这种形式,要写成 x\sum_{n=1}^{\infty }nx^{n-1}=x[\sum_{n=1}^{\infty }x^{n}]'并且n=1和n=0时幂级数求导后的值是相等的,所以我们可以把x[\sum_{n=1}^{\infty }x^{n}]'写成x[\sum_{n=0}^{\infty }x^{n}]' 并利用公式解题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值