解题思路:求收敛域,先求收敛半径,得出收敛区间,再考查两个端点。
第一步:先求收敛半径,得出收敛区间,考查两个端点是否发散得出收敛域。
求收敛半径这里有两个方法:
①公式一
②公式二
,
那么怎么求这个极限呢?我们有两种方法:
第一种:我们想到:,可以转换成类似的式子:
即:;
第二种:我们同样可以利用夹闭准则:n趋于无穷时:
,收敛域为(-1,1)且x为正负1时,幂级数是发散的,所以收敛域为(-1,1).
第二步:幂级数求和
幂级数求和我们同样也是利用现有公式;
这里我们显然要用到这个公式:,
注意这里不能写成
,因为n从0开始的话,n=0,就会出现
,而x=0时是没有意义的。所以不能写成这种形式,要写成
而为什么后面我们求导用的导数是n=0呢,因为公式用的是n=0,并且n=1和n=0时幂级数求导后的值是相等的,所以我们可以把
写成
并利用公式解题。
总结知识点:
①.收敛半径公式:⑤⑥
,
②.求的极限:
第一种:我们想到:,可以转换成类似的式子:
即:;
第二种:我们同样可以利用夹闭准则:n趋于无穷时:
③.幂级数求和公式:
④.不能写成
,因为n从0开始的话,n=0,就会出现
,而x=0时是没有意义的。所以不能写成这种形式,要写成
并且n=1和n=0时幂级数求导后的值是相等的,所以我们可以把
写成
并利用公式解题。