幂级数和函数经典例题_三、复变函数的级数

这篇博客介绍了复变函数中的幂级数,包括复数项级数的收敛条件、幂级数的性质与求解方法,特别是Abel定理的应用。接着讲解了Taylor级数和Laurent级数的概念,强调了它们在复平面上的收敛域和解析性,并通过实例展示了如何确定收敛半径。最后讨论了Laurent级数的展开定理及其应用。
摘要由CSDN通过智能技术生成

1.复数项级数

复数列的极限,与高数中的基本一致,其收敛的充分必要条件便是实部虚部这两个实数收敛。

将复数列的前

项相加得其和
,当
时,便构成了一个复数项级数,与实数项级数相同,它也具有敛散性,其收敛的充分必要条件为实部虚部两个实数项级数都收敛。

高数中关于级数的一些有趣的推论或性质也可以推广到这里:

级数收敛,则其通项的极限为零
存在绝对收敛的概念,即由通项的模所构成的级数收敛的话,则称该级数绝对收敛
若一级数绝对收敛,则一定是收敛级数
收敛级数必有界

还有一个有趣的性质:

d987aefff534a94aefe69a661f2ad13b.png

2.幂级数

将上述的通项

换为复变函数
,便可得到一个
复变函数项级数,即:

若在一点

处,级数
收敛,则称该函数项级数在
处收敛;若在
内的每一点都收敛,则该函数级数在区域
内收敛,并可求其
和函数:

情况再特殊一点,当 通项

为幂函数
,该级数便为
幂级数。接下来边讨论其敛散性。

首先给出Abel定理:

44b8d5bf3d7a2d69df4605b420a93b8a.png

可以看出,与高数中的实数幂级数基本一致,所以这里也存在收敛半径的概念。高数中的收敛区间对应实数轴上的一段,而这里对应的是复平面上的圆域。

2acb78b4c443836c089d7c480fd52982.png
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值