111
第十章
函数项级数习题课
一、
主要内容
1
、基本概念
函数列(函数项级数)的点收敛、一致收敛、内闭一致收敛、绝对收敛、和
函数
幂级数的收敛半径、收敛区间、收敛域
2
、
一致收敛性
A
、
函数列
{
(
)}
n
f
x
一致收敛性的判断:
(
1
)定义:用于处理已知极限函数的简单函数列的一致收敛性
(
2
)
Cauchy
收敛准则:用于抽象、半抽象的函数列的一致收敛性的判断
(
3
)确界(最大值方法)
:
||
(
)
(
)
||
0
n
f
x
f
x
(
4
)估计方法:
|
(
)
(
)
|
0
n
n
f
x
f
x
a
(
5
)
Dini-
定理:条件
1
)闭区间
[
,
]
a
b
;
2
)连续性;
3
)关于
n
的单调性
注、除
Cauchy
收敛准则外,都需要知道极限函数,因此,在判断一致收敛
性时,一般应先利用点收敛性计算出极限函数。
注、定义法、确界方法和估计方法的本质是相同,定义方法通常处理抽象
的对象,估计方法是确界方法的简化形式,估计方法处理较为简单的具体的对
象,确界方法是通过确界的计算得到较为精确的估计,通常用于处理具有一般
结构的具体的函数列,也可以用于非一致收敛性的判断。
注、
Dini
定理中,要验证的关键条件是关于
n
的单调性,定理中相应的条
件为“对任意固定的
x
[
,
]
a
b
,
{
(
)}
n
f
x
作为数列关于
n
是单调的”
,注意到收敛
或一致收敛与函数列前面的有限项没有关系,
上述条件也可以改为
“存在
N
,
当
n>N
时”条件成立即可,但是,要注意
N
必须是与
x
无关的,即当
n>N
时,对
所有任意固定的
x
[
,
]
a
b
,
{
(
)}
n
f
x
关于
n
单调,因此,此时的单调性也称为对
n
的单调性关于
x
一致成立。
非一致收敛性的判断
(
1
)定义
(
2
)
Cauchy
收敛准则
(
3
)确界法:存在
n
x
,使得
||
(
)
(
)
||
n
n
n
f
x
f
x
不收敛于
0
(
4
)和函数连续性定理
(
5
)端点发散性判别法:
{
(
)}
n
f
x
在
c
点左连续,
{
(
)}
n
f
c
发散,则
{
(
)}
n
f
x
在