威尔金森功分器(Wilkinson Power Divider)

        威尔金森功分器是一个备受推崇的被动分配器,它的设计简单却功能强大,常用于将一个输入信号分成两个相等的输出信号。本文将探讨威尔金森功分器的原理和设计要点。

        首先,我们知道,在三端口网络中,matching、reciprocal和lossless不能同时实现,但是我们可以放宽其中一个条件。放宽matching的条件,我们得到了环形器(circulator),放宽reciprocal的条件,我们得到了T-Juction,放宽lossless的条件,我们就得到了威尔金森功分器(Wilkinson Power Divider)。因此,威尔金森功分器的三个特点为:matching(三端口匹配),reciprocal(对称),lossy(意味着并非无损)。

        我们使用有损的条件,来满足三个端口的匹配:假设端口不匹配,则端口2和3则存在反射系数,为了抵消反射系数,我们在端口2和3之间引入了一个电阻。由于电阻的存在,威尔金森功分器为有损而非无损,这样就完美解决了三个端口都匹配的问题

        在分析之前,对电路进行Z0归一化处理,因为归一化之后具有普遍性:

        下面我们要使用even or odd mode analysis的方法,对威尔金森功分器进行分析。我们给端口2和3相同的电压,使得模值和相位均相等,这种方法称为even mode analysis;给端口2和3相反的电压,使得模值相等,相位相反,这种方法称为odd mode analysis。

        奇偶模分析是微波设计中最常用的一种分析方法。用单一的端口输入分析起来比较复杂,但是一个信号可以分解为奇模和偶模的内叠加,奇模模分析相当于在两段线之间加了一个地,偶模分析就是两条线并行,可以用一段线进行电路,场的分析。根据电路线性相加的原理,二者的作用效果一叠加,结果就出来了。

        端口1处,归一化电阻值为1,从中心线对称,源电阻可以表示为两个电阻值为2的电阻并联。λ/4传输线的归一化阻抗为Z0,Q。对于上文提到的二等分功分器,阻抗为\sqrt{2},端口2和端口3之间的归一化电阻值为2。可以表示为两个电阻值为1的电阻串联。

        奇偶模分析法首先要定义出来电路激励的分离模式:偶模 Vg_{2}=Vg_{3}=2V_{0};奇模,Vg_{2}=-Vg_{3}=2V_{0}。然后这两个模式叠加,有效的激励就是Vg_{2}=4V_{0}, Vg_{3}=0.

        Even mode analysis:

       偶模激励Vg_{2}=Vg_{3}=2V_{0},因此V^{e}_{2}=V^{e}_{3},电阻r两端电压相等,没有电流流过电阻r,所以端口1的两个传输线输入之间短路。因此可以把上图归一化电路剖分开,如下图所示

        根据λ/4传输线的性质,这个时候从端口2看进去的阻抗为 Z_{in}=\frac{z_{0,Q}^{2}}{2}

        假设端口2匹配Z_{in}=1,则 z_{0,Q}=\sqrt{2},  \Gamma =\frac{Zg-Z0}{Zg+Z0}=\frac{2-\sqrt{2}}{2+\sqrt{​{2}}}

        此时,我们将传输线拿出:

        Odd mode analysis:

        对于奇模激励,Vg_{2}=-Vg_{3}=2V_{0},因此V^{o}_{2}=-V^{o} _{3};沿着归一化电路中线分开是电压零点,所以将电路分解成两个部分,如下图所示:

 

        从端口2看过去的阻抗为r/2。这是因为端口1处短路,经过λ/4变换器在端口2处等效为开路。对于等分功分器,如果r=2,r/2=1,则端口2 是匹配的。这时,有V_{2}^{o}=V_{0},V_{1}^{o}=0。对于这种激励模式,全部功率都传输到电阻r上。而没有进入端口1。

        对于等分功分器,上下两部分是对称的,因此,我们也能得到端口3也是匹配的。

        那么端口1 是不是匹配的呢?当端口2和端口3都接匹配负载时,端口1处的输入阻抗是多少呢?等效电路如下图所示,因为V_{2}=V_{3},因此没有电流流过电阻r,可以直接被忽略。留下电路:

        从端口1处看过去是两个接有阻抗为1的四分之一波长变换器并联的阻抗。四分之一波长阻抗变换器怎么用呢?

                                        ​​​​​​​        ​​​​​​​        Z_{1brach}=\frac{(\sqrt{2})^{2}}{1}Z_{in,1}=\frac{(\sqrt{2})^{2}}{2}=1

  S_{11}=0,S_{22}=S_{33}=0

        因此端口1也是匹配的;当所有终端都匹配时,全部端口都是匹配的。

        端口1&端口2:

                                 

        由于V^{e}_{1}=-jV\sqrt{2},  V^{e}_{2}=V,  V^{o}_{1}=0V^{o}_{2}=V,所以

        由于上下电路相同,所以 

        端口2&端口3:

        由于,所以

        当信号从端口1输入时,信号没有经过电阻r。所以没有功率消耗在电阻r上。但是当信号从端口2和端口3输入时,会有部分功率消耗在电阻r上。因此,端口2和端口3又是隔离的。这个电阻即实现了3个端口的同时匹配,也实现了理想中的端口2和端口3之间的隔离。

        这个三端口网络所对应的传输矩阵就是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值