在数字化浪潮中,3D数字人技术正以前所未有的速度重塑虚拟与现实的边界。然而,传统数字人建模往往需要复杂的三维扫描设备、高昂的时间成本,以及专业的技术门槛。近日,阿里巴巴开源社区推出革命性项目LHM(Lightning Human Model),仅凭单张图像即可在几秒内生成高精度、可动画化的3D数字人模型,支持实时渲染与姿态控制,将技术门槛降至“零基础”,让每个人都能轻松创造属于自己的数字分身。
一、LHM是什么?为何它颠覆传统?
LHM是一款基于深度学习框架的轻量化开源工具,其核心目标是 “让3D数字人触手可及” 。与依赖多视角拍摄或昂贵硬件的传统建模方式不同,LHM仅需用户上传一张普通照片(如手机自拍),即可自动解析人体结构、面部特征、服装纹理等信息,快速生成一个支持表情控制、肢体动作调整的3D模型。
技术突破亮点:
-
单图重建,秒级生成
LHM采用创新的多尺度特征融合算法,通过单张图像推测人体的三维几何与材质信息。例如,它能从一张正面照片中智能补全侧面轮廓、背部细节,甚至衣物褶皱的立体形态,生成效果接近专业3D扫描仪的输出。 -
实时渲染,动态操控
模型生成后,用户可通过简单的参数滑块或脚本指令,实时调整数字人的表情(如微笑、眨眼)、肢体动作(如挥手、行走)。系统内置的物理引擎能模拟自然的重力与运动轨迹,让动作过渡流畅逼真。 -
细节优化,媲美真人
针对发丝、皮肤质感、光影反射等难点,LHM引入超分辨率增强技术与动态光照模型,即使是低分辨率输入图像,也能输出细腻的毛孔纹理和自然的环境光效,避免“塑料感”通病。
二、技术核心:LHM如何实现“化静为动”?
LHM的底层架构融合了多项前沿AI技术,其流程可分为三大模块:
-
3D几何重建
通过 神经网络隐式场(NeRF) 技术,将2D图像映射为3D空间中的密度和颜色分布,结合人体骨骼先验知识,快速构建可变形的人体网格模型。 -
材质与纹理生成
采用生成对抗网络(GAN),从输入图像中提取高保真纹理,并自动补全不可见区域的材质细节(如衣物背面图案),确保模型旋转时视觉一致性。 -
动画驱动与实时交互
基于姿态估计模型与动作迁移算法,用户可通过预设动作库或自定义骨骼关键点,驱动数字人完成复杂动作。系统还支持与Unity、Unreal引擎无缝对接,方便开发者嵌入游戏或虚拟场景。
三、应用场景:从个人创作到产业落地
LHM的低门槛与高性能,使其在多个领域展现潜力:
- 元宇宙与虚拟社交:用户快速创建个性化虚拟形象,用于直播、VR社交平台。
- 电商与广告:商家一键生成商品展示的3D模特,支持360度试穿与互动演示。
- 影视与游戏:降低角色建模成本,辅助动画师快速原型设计。
- 教育医疗:构建虚拟教师、患者模型,用于沉浸式教学或手术模拟。
四、快速体验指南:三步打造你的数字人
-
环境部署
LHM支持Windows/Linux系统,依赖Python与PyTorch框架,GitHub仓库提供详细安装脚本与预训练模型。git clone https://github.com/aigc3d/LHM pip install -r requirements.txt
-
模型生成
运行命令行工具,输入图像路径,等待数秒即可获得OBJ或GLB格式的3D模型:python generate.py --input_image=my_photo.jpg
-
实时操控
通过内置的WebUI界面,调整表情参数或导入动作序列,实时预览数字人动画并导出视频。
五、开源生态与社区共创
阿里团队表示,LHM将持续优化模型轻量化与跨平台兼容性,并计划引入语音驱动口型同步与多语言交互功能。开源社区已涌现多个衍生工具,例如将LHM与实时动捕设备结合,实现“真人动作实时映射到数字人”。开发者可通过贡献插件或训练数据,共同推动技术的平民化进程。
LHM的诞生,不仅降低了3D数字人的创作门槛,更开启了“人人可参与”的虚拟内容生产新时代。无论是个人创作者还是企业开发者,都能借助这一工具,以最低成本探索数字孪生、虚拟偶像等前沿领域。立即访问GitHub仓库,开启你的数字人创作之旅吧!
项目地址:https://github.com/aigc3d/LHM