数学建模——线性规划

目录

一. 线性规划

1.基本概念

线性规划的标准形式为:

线性规划的解:

线性规划三要素:

 灵敏度分析:

2.matlab的实现 

二. 整形规划

1.整型规划分类

2.基础模型 

 2.1  非线性约束条件的线性化

 3.模型求解

一.钢管下料问题

二.蒙特卡洛问题


一. 线性规划

1.基本概念

线性规划的标准形式为:

线性规划的解:

        可行解  满足约束条件(1.4)的解x向量,被称为线性规划问题的可行解,而使目标函数(1.3)达到最大值的可行解叫做最优解。

        可行域 所有可行解共同构成可行域,记作R

线性规划三要素:

 灵敏度分析:

2.matlab的实现 

线性回归基础概念

optimproblem函数详解

solve函数详解

基于问题的优化工作流

利用 optimproblem函数求解

二. 整形规划

1.整型规划分类

2.基础模型 

 2.1  非线性约束条件的线性化

1.相互排斥的约束条件

 

2.固定费用问题

 3.模型求解

Matlab中 intlinprog函数用法

 非线性求解

一.钢管下料问题

切割模式 

 

目标函数:

 

约束条件: 

目标一: x_{2}=12,x_{5}=15共27根,余27m

目标二:x_{2}=15,x_{5}=5,x_{7}=5共25根,余35m

问题2

决策变量:

x_{i} ~按第i 种模式切割的原料钢管根数(i=1,2,3).

r_{1i},r_{2i},r_{3i},r_{4i} ~ i 种切割模式下,每根原料钢管生产4m5m6m8m长的钢管的数量.

 目标函数(总根数):

约束条件: 

整数约束: xi ,r1i, r2i, r3i, r4i (i=1,2,3)为整数

每根余料要小于3

 

 

 寻找约束非线性多变量函数的最小值 - MATLAB fmincon - MathWorks 中国

二.蒙特卡洛问题

蒙特卡洛方法也称为计算机随机模拟方法,它源于世界著名的赌城摩纳哥的Monte Carlo(蒙特卡洛)。它是基于对大量事件的统计结果来实现一些确定性问题的计算。使用蒙特卡洛方法必须使用计算机生成相关分布的随机数,MATLAB给出了生成各种随机数的命令。

 

例题:

 

function [f,g]=mengte(x);  %定义目标函数和约束条件
f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-...
x(4)-2*x(5);
g=[sum(x)-400
x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800
2*x(1)+x(2)+6*x(3)-200
x(3)+x(4)+5*x(5)-200];
end
clc, clear
%rng('shuffle')  %根据当前时间为随机数生成器提供种子
rng(0) %进行一致性比较,每次产生的随机数是一样的
p0=0; n=10^6; tic    %计时开始

for i=1:n
   x=randi([0,99],1,5); %产生一行五列的区间[0,99]上的随机整数
   [f,g]=mengte(x);
   if all(g<=0)
       if p0<f
           x0=x; p0=f; %记录下当前较好的解
       end
   end
end
x0, p0, toc    %计时结束

### 使用 Python cvxpy 进行数学建模和规划求解 #### 导入必要的库 为了使用 `cvxpy` 进行数学建模,首先需要导入所需的库。这通常包括 `cvxpy` 自身以及用于数值计算的 `numpy`。 ```python import cvxpy as cp import numpy as np ``` #### 定义决策变量 定义模型中的未知量即为决策变量。这些变量可以根据具体问题设置成连续型或离散型(整数)。例如: ```python c = np.loadtxt('data4_10.txt') x = cp.Variable((4, 5), integer=True) # 创建一个大小为 (4, 5),且取值范围限定为整数类型的矩阵作为决策变量[^3] ``` 这里创建了一个名为 `x` 的四维向量,其元素均为布尔类型(通过上下界限制实现),并指定了该变量应满足特定约束条件下的整数属性。 #### 构造目标函数 接下来要构建的是优化的目标表达式。对于最小化成本的问题来说,可以通过如下方式来设定目标函数: ```python obj = cp.Minimize(cp.sum(cp.multiply(c, x))) # 将成本系数与对应的决策变量相乘再累加起来形成总费用,并将其设为目标最小化的对象 ``` 这段代码实现了将给定的成本数组 `c` 中每一个位置上的权重同相应位置处的决策变量 `x` 值做乘法运算之后的结果汇总到一起构成最终待极小化的目标值。 #### 添加约束条件 除了明确指出希望达到什么样的最优点之外,还需要规定一些额外的要求使得解决方案更加贴近实际情况。比如在这个例子当中就加入了几个典型的不等式形式的边界控制措施: ```python cons = [ 0 <= x, x <= 1, cp.sum(x, axis=0) == 1, cp.sum(x, axis=1) <= 2 ] # 设置一系列关于决策变量 x 的线性不等式/方程组作为附加限制条款 ``` 上述列表包含了四个不同方面的规则:确保所有分配比例介于零至一之间;每一列仅有一个供应商被选中供应货物;每种商品最多由两个不同的仓库提供服务。 #### 解决方案实例化及求解过程 最后一步就是把之前准备好的各个组件组合在一起组成完整的凸优化问题结构体,并调用内置的方法去寻找符合条件的最佳配置方案。 ```python prob = cp.Problem(obj, cons) prob.solve(solver='GLPK_MI') # 实例化一个问题实体并将前面建立的对象传递进去完成初始化工作后执行具体的寻优操作 print('最优解为:\n', x.value) print('最优值为:', prob.value) ``` 此部分先建立了包含有既定目标函数和一组关联紧密的约束关系在内的整体框架,随后借助选定的具体算法引擎来进行实际计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值