小土堆-pytorch-神经网络-非线性激活函数07_笔记

非线性激活函数-ReLU

ReLU的参数

relu只有一个参数 inplace就是替换的意思 输出值是否替换输入值,一般情况下用flase

  • inplace=True 替换
  • inplace=flase 不替换
    一般情况下用flase

ReLU实战

从零实现relu

import torch
from torch import nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],
                   [-1,3]])
input= torch.reshape(input,(-1,1,2,2))
print(input.shape)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output
# 网络搭建完毕

# 创建网络
tudui=Tudui()
output=tudui(input)
print(output)

运行结果如下:
在这里插入图片描述

引入图片数据,用tensorboard查看

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input=torch.tensor([[1,-0.5],
                   [-1,3]])
input= torch.reshape(input,(-1,1,2,2))
print(input.shape)

dataset=torchvision.datasets.CIFAR10("../data",train=False,download=True,
                                     transform=torchvision.transforms.ToTensor())
dataloder=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output
#网络搭建完毕

#创建网络

tudui=Tudui()

writer=SummaryWriter("../logs_relu")
step=0
for data in dataloder:
    imgs,targets=data
    writer.add_images("input",imgs,global_step=step)
    output=tudui(imgs)
    writer.add_images("output",output,step)
    step+=1

writer.close()

运行结果如图:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值