1.数列极限收敛证明题
【数列极限证明大题】解题方法,证明数列极限存在并求此极限,单调有界准则
2.微分中值定理证明大题
关于微分中值定理有关的证明题有三类题型:
- 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0
- 证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0
- 证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)
复习总结之构造辅助函数:
怎么记忆后一张图片,不妨试试枚举法,常见就那么多种类型,思考一下。
2.1 【单中值问题】 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0
解决方法:
- 分析法(还原法)
就是通过思考,待证明结论的原函数是什么,来设原函数,其中可以任意添加常数,让得到值的过程更加顺畅,因为利用罗尔中值定理,我们需要两个值相同的点。
2.利用已知辅助函数,直接构造出辅助函数
利用我们积累的辅助函数,来构造出对应的类型
可以广义化的使用
第一组辅助函数:(其实可由第二组最一般的情况推出来,但是做题需要,比较常用,我们直接把它记住)
第一组为常数,第二组扩展到一般,扩展到广义
第二组辅助函数:
只记最一般的情况即可,其它情况都可以由最一般的情况推出。
构造辅助函数实践:
- 计算微分方程的方法,求出辅助函数
较为麻烦,最后考虑这种方法
2.2 【双中值问题】证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0
其中f’(ξ),f’(η)是必须存在的即为双中值问题
根据题目要求分为两类
1.不要求ξ≠n
在同一区间[a,b]上用两次中值定理(拉格朗日,柯西中值定理)
2.要求ξ≠η
将区间[a,b]分为两个子区间,在两个子区间分别用拉格朗日中值定理
1.不要求ξ≠n(仅1998年考过一次)
如何决定使用拉格朗日还是柯西中值定理?
看看有没有分母,看看是否导一次就可以
例题一:[1998年]
方法:找出ξ和η复杂的部分换成柯西或拉格朗日,代入原等式,再把剩下的那个用中值定理表示出来。
例题2:
2.要求ξ≠n(重点爱考)
整个中值定理的做题过程核心都是逆向思考
真题1:
模拟题1:
三个不同点,设两个分割点
模拟题2:
三个不同点,设一个分割点,因为分割点本身就是一个中值点
2.3 【高阶导数问题】证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)
用带拉格朗日余项的泰勒公式,其中x0点选题目中提供函数值和导数值信息多的点
高阶导数用泰勒,合理!实际题目中可能对多个点用泰勒,然后整合起来,绝对值放缩,根据待证明的结论,反推设x=什么,然后再证明。
真题1:
真题2:
3.微分不等式证明大题
微分不等式和积分不等式,在真题中不会考察的很难
3.1 利用单调性证明不等式(高中知识)
核心思想:通过导数判断函数的单调性,再通过范围确定值。
核心操作: 构造函数
- 直接构造函数
- 变形构造函数
- 形如A<f(x)<B的不等式(或A≤f(x)≤B)的不等式
- 这种题中f(x)往往都单调,且A和B一般也恰好就是f(x)在区间[a,b]端点处的函数值(或极限)
细节操作手法:值得思考的点在于多种操作手法:
-
复杂变简单
- 比如通过两边取对数等手法,进一步使待证明的式子化简
- 比如含有根号的式子,通过还原,去掉根号
- 比如x换原成1/x,把复杂分式转变成简单分式
-
乘积形式,分段讨论
- 比如一个简单的等式*复杂的等式,单独讨论简单的,再在简单的范围内,讨论复杂的.如:(x-1)(x-ln2x+2klnx-1),就要分开讨论
3.2 利用几何意义证明不等式
一般来说,往往用于选择题中,因为证明题又不能画图
3.3 利用凹凸性证明不等式(重点)
该方法的本质:扔掉泰勒展开式后的拉格朗日余项,将等式变成不等式
这种题往往会告诉你f(x)的二阶导函数 f’'(x)恒正或者恒负。当然二阶导也能是4阶导
看到n(偶数)阶导数>0,要想到泰勒展开式去掉拉格朗日余项,得到的<=f(x)
两边积分丢掉不等式的=
4.积分不等式
4.1 利用变限积分求导,证明积分不等式(基本重要)
方法:将上限b改成x,移动构造F(x)的单调性即可
例题1:
例题2:
4.2 利用柯西不等式,证明积分不等式
4.3 利用拉格朗日中值定理和泰勒公式
拉格朗日中值定理,找的是f’(x)和f(x)之间的关系
泰勒公式找的是更高阶的关系
连续可导,说的是导函数连续
例题1:拉格朗日
例题2:泰勒展开