高等数学 证明题大总结_数列极限收敛_中值定理证明大题_微分不等式证明大题_积分不等式证明

1.数列极限收敛证明题

【数列极限证明大题】解题方法,证明数列极限存在并求此极限,单调有界准则

2.微分中值定理证明大题

关于微分中值定理有关的证明题有三类题型:

  • 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0
  • 证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0
  • 证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)

复习总结之构造辅助函数:
在这里插入图片描述

在这里插入图片描述

怎么记忆后一张图片,不妨试试枚举法,常见就那么多种类型,思考一下。

2.1 【单中值问题】 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0

解决方法:

  1. 分析法(还原法)

就是通过思考,待证明结论的原函数是什么,来设原函数,其中可以任意添加常数,让得到值的过程更加顺畅,因为利用罗尔中值定理,我们需要两个值相同的点。

2.利用已知辅助函数,直接构造出辅助函数

利用我们积累的辅助函数,来构造出对应的类型
可以广义化的使用

第一组辅助函数:(其实可由第二组最一般的情况推出来,但是做题需要,比较常用,我们直接把它记住)

在这里插入图片描述

第一组为常数,第二组扩展到一般,扩展到广义

第二组辅助函数
只记最一般的情况即可,其它情况都可以由最一般的情况推出。

在这里插入图片描述

构造辅助函数实践:
在这里插入图片描述
在这里插入图片描述

  1. 计算微分方程的方法,求出辅助函数

较为麻烦,最后考虑这种方法

2.2 【双中值问题】证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0

其中f’(ξ),f’(η)是必须存在的即为双中值问题
根据题目要求分为两类
1.不要求ξ≠n
在同一区间[a,b]上用两次中值定理(拉格朗日,柯西中值定理)
2.要求ξ≠η
将区间[a,b]分为两个子区间,在两个子区间分别用拉格朗日中值定理

1.不要求ξ≠n(仅1998年考过一次)
如何决定使用拉格朗日还是柯西中值定理?

看看有没有分母,看看是否导一次就可以

例题一:[1998年]

方法:找出ξ和η复杂的部分换成柯西或拉格朗日,代入原等式,再把剩下的那个用中值定理表示出来。

在这里插入图片描述
例题2:
在这里插入图片描述


2.要求ξ≠n(重点爱考)

整个中值定理的做题过程核心都是逆向思考

真题1:
在这里插入图片描述
在这里插入图片描述

模拟题1:
三个不同点,设两个分割点

在这里插入图片描述

模拟题2:
三个不同点,设一个分割点,因为分割点本身就是一个中值点

在这里插入图片描述


2.3 【高阶导数问题】证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)

用带拉格朗日余项的泰勒公式,其中x0点选题目中提供函数值和导数值信息多的点

高阶导数用泰勒,合理!实际题目中可能对多个点用泰勒,然后整合起来,绝对值放缩,根据待证明的结论,反推设x=什么,然后再证明。

真题1:

在这里插入图片描述

真题2:
在这里插入图片描述
在这里插入图片描述

3.微分不等式证明大题

微分不等式和积分不等式,在真题中不会考察的很难

3.1 利用单调性证明不等式(高中知识)

核心思想:通过导数判断函数的单调性,再通过范围确定值。
核心操作: 构造函数

  • 直接构造函数
  • 变形构造函数
  • 形如A<f(x)<B的不等式(或A≤f(x)≤B)的不等式
    • 这种题中f(x)往往都单调,且A和B一般也恰好就是f(x)在区间[a,b]端点处的函数值(或极限)

细节操作手法:值得思考的点在于多种操作手法:

  • 复杂变简单

    • 比如通过两边取对数等手法,进一步使待证明的式子化简
    • 比如含有根号的式子,通过还原,去掉根号
    • 比如x换原成1/x,把复杂分式转变成简单分式
  • 乘积形式,分段讨论

    • 比如一个简单的等式*复杂的等式,单独讨论简单的,再在简单的范围内,讨论复杂的.如:(x-1)(x-ln2x+2klnx-1),就要分开讨论

3.2 利用几何意义证明不等式

一般来说,往往用于选择题中,因为证明题又不能画图

3.3 利用凹凸性证明不等式(重点)

该方法的本质:扔掉泰勒展开式后的拉格朗日余项,将等式变成不等式
这种题往往会告诉你f(x)的二阶导函数 f’'(x)恒正或者恒负。当然二阶导也能是4阶导

看到n(偶数)阶导数>0,要想到泰勒展开式去掉拉格朗日余项,得到的<=f(x)

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

两边积分丢掉不等式的=

4.积分不等式

4.1 利用变限积分求导,证明积分不等式(基本重要)

方法:将上限b改成x,移动构造F(x)的单调性即可

例题1:
在这里插入图片描述

例题2:

在这里插入图片描述

4.2 利用柯西不等式,证明积分不等式

在这里插入图片描述
在这里插入图片描述

4.3 利用拉格朗日中值定理和泰勒公式

拉格朗日中值定理,找的是f(x)和f(x)之间的关系
泰勒公式找的是更高阶的关系

连续可导,说的是导函数连续

例题1:拉格朗日

在这里插入图片描述

例题2:泰勒展开
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二叉树果实

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值