数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图

图的基本概念

1. 图的定义

图由顶点集V和边集E组成,记为G=(V,E).
图中顶点的个数,也称为图G的阶,用|V| 表示图G中顶点的个数, |E|表示图G中边的条数.

注意:
图不可以为空.即图的点集不能为空,图可以没有边,但是有边,边肯定要连接图.

1.1 无向图和有向图

无向图:
E是无向边,边是顶点的无序对,记为(v,w)=(w,v),其中v,w是顶点.

有向图:
E是有向边(也称弧)的有限集合时,则图G为有向图.弧是顶点的有序对,记为<v,w>,其中v,w是顶点,v称为弧尾,w称为弧头

1.2 简单图和多重图

简单图:
1️⃣ 不存在重复边
2️⃣不存在顶点到自身的边(无环的意思)
在这里插入图片描述

多重图:
可以存在重复边,可以有环.

2.图的一些术语

2.1 顶点的度,入度,出度

对于无向图,顶点的度是指依附于该顶点边的条数,记为TD(v).

简言之,与顶点接触的边的条数,对一个边来说,他必然会和两条边接触。所以一个无向图中,所有顶点的度之和=2倍的边数。

对于有向图,
入度数以顶点v为终点的有向边的数目,记为ID(v).
出度是以顶点v为起点的有向边的数目,记为OD(v)
顶点的度=其入度和出度之和,即TD(v)=ID(v)+OD(v)

简言之,入度数箭头接触该结点的边数,出度是线尾接触结点的边数

2.2 路径 回路,简单路径,路径长度,点到点的距离

路径:顶点vp到顶点q之间的一条路径是指顶点序列,vp,v1,v2…vq

回路:第一个顶点和最后一个顶点相同的路径叫回路

简单路径:在路径序列中,没有顶点重复的路径。

简单回路:除一个顶点和最后一个顶点外,其余顶点不重复的回路

点到点的距离:从顶点v出发到顶点v的最短路径存在,则称路径的长度为u到v到距离,如果两个顶点之间不存在路径,则记为无穷

2.3 连通图,强联通图

引入基本概念:连通,强连通
连通:无向图中,若从顶点v到顶点w有路径存在,则称v和我是连通的
强连通:有向图中,v到w,w到v之间都有路径,则称这两个顶点是强连通的。

连通图:若图中任意两个顶点都是连通的,则称图G为连通图,否则则称非连通图。

对于n个顶点的无向图G,若G是连通图,则最少有n-1条边。
若G是非连通图,则最少有c2n-1

强连通图,任何一对顶点都是强连通的图。
强连通图,至少有n条边,形成n条边

3. 图的局部–子图

子图是顶点是图的一部分,顶点之间原先在图中的线可以存在,也可以不存在。但是不是两头都有接触的边,肯定不能存在。

3.1 连通分量,强连通分量

无向图中的极大连通子图称为连通分量。

子图必须连通,且包含尽可能多的顶点和边。

有向图中的极大强连通子图称为有向图的强连通分量。

如何写出一个图中的所有强连通分量?
写出一个图中的所有强连通分量

3.2 生成树

连通图的生成树是包含图中全部顶点的一个极小连通子图。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
在这里插入图片描述

3.3 生成森林

在非连通图中,连通分量的生成树构成了非连通图的生成森林。
在这里插入图片描述

3.4 边的权,带权图

边的权–在一个图中国,每条边都可以标上具有某种含义的数值,该数值称为该边的权值
带权图/网 边上带有权值的图为带权图,也称网。
带权路径长度:当图树带权图时,一条路径上所有边的权值之和,称为该路径的带权路径长度。

4. 几种特殊形态的图

4.1 无向完全图和有向完全图

在这里插入图片描述

4.2 树和有向树

树:不存在回路,且连通的无向图。

n个顶点的树,必有n-1条边,若边>n-1,则一定有回路

有向树:一个顶点的入度为0,其余顶点的入度均为1的有向图,称为有向树

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值