数列
1.单调有界准则+积分的拆分
在本题中,核心的一点是,通过积分的拆分变形得出an的单调性,然后思考单调有界准则,考虑有界性。
题目来源:2025李林六套卷 卷1 选择7
2 单调有界准则
2013年 单调有界准则
思路:这道题问的是数列{an}收敛,又有有界。思路肯定是用单调有界准则
题目来源:2012年 数学二 3题
2024年 单调有界准则
3.1单调有界准则 证明题
3.1.1 2012年单调有界准则证明大题
难在第二问这种抽象的难以捋清思路
有且仅有一个实根---->零点定理+单调性
零点定理:f(a)f(b)<0,则说明f(a)和f(b)异号,存在一个f( c )在a到b之间,使得f( c )=0,一般来说取的这两点都是端点。
有且仅有也就是单调性,a到b之间是单调的,也就是说有且仅有一个实根
一般这种抽象的数列极限证明存在,都是用单调有界准则
3.1.2 2013年单调有界准则证明大题
本题中给的条件是一个不等式,而不是一个递推数列的形式,故用预求的方法,或是数学归纳法都不行。这种题的思路,其实是比较简单的,用数列的单调有界准则,无非是证明xn<啥或>啥,单调性 无非是xn-<xn+1或xn->xn+1,根据给出的不等式和第一问中得到的结论的不等式,向这两个目的前进。
在最终计算极限的过程中,由于给的是不等式,想要求值,肯定要是等式才能求值,所以就是再找一个不等式,一个大于等于,一个小于等于,夹到=号成立,计算值。
导数
1.高阶导数的计算 牛顿莱布尼兹 泰勒公式
题目来源:2015年 数学二 第10题
2. 曲率相关(待更新)
2.1 2024 曲率圆
3.给出x趋近于0,实则求x趋近于1判断某点是否为驻点,是否为极值点
驻点就是该点的导数值是否为0
极值点这里用的脱帽法,已知某点在该点上=0,在邻域上>0,即可得到该点是极小值,周围的值都比它大
题目来源:2025李林六套卷 卷2 选择4
4.某点处导数定义和二阶导数定义
题目来源:2025李林六套卷 卷2 选择5
5.可导的定义,含有绝对值
可导的定义:
6.选择题排除法技巧或泰勒公式不等式证明
7. 实际应用转换数学模型,积分学与微分学的结合
8. 微积分可导连续
9.参数方程转化为直角坐标系下的方程,函数连续性,可导性判断
如何将参数方程转化为直角坐标系下的方程:
核心:用参数方程其中一个方程把参数表示出来,然后代入进另一个参数方程中
判断连续性,极限值是否=函数值
判断导数存在性,左导数是否=右导数,间断点用导数定义判断。