DPC++实验---矩阵乘法示例

文章通过两个练习展示了使用SYCL进行GPU和CPU上的矩阵乘法运算。代码实现了GPU和CPU上的kernel,对比了不同参数设置(如tile尺寸)对运算性能的影响。实验发现,改变tile尺寸对GPU执行时间有显著影响,而对CPU执行时间影响较小。同时,当tile尺寸过大时,可能导致执行时间增加甚至出错。
摘要由CSDN通过智能技术生成

目标:

        实现代码实践运行并分析结果


内容:

一、练习一

代码如下:

#include <chrono>
#include <iostream>
#include <CL/sycl.hpp>
#define random_float() (rand() / double(RAND_MAX))
using namespace std;
using namespace sycl;
// return execution time
double gpu_kernel(float *A, float *B, float *C, int M, int N, int K, int block_size, sycl::queue &q) {
  // define the workgroup size and mapping
  auto grid_rows = (M + block_size - 1) / block_size * block_size;
  auto grid_cols = (N + block_size - 1) / block_size * block_size;
  auto local_ndrange  = range<2>(block_size, block_size);
  auto global_ndrange = range<2>(grid_rows, grid_cols);
  double duration = 0.0f;
  auto e = q.submit([&](sycl::handler &h) {
      h.parallel_for<class k_name_t>(
          sycl::nd_range<2>(global_ndrange, local_ndrange), [=](sycl::nd_item<2> index) {
              int row = index.get_global_id(0);
              int col = index.get_global_id(1);
              float sum = 0.0f;
              for (int i = 0; i < K; i++) {
                sum += A[row * K + i] * B[i * N  + col];
              }
              C[row * N + col] = sum;
          });
    });
    e.wait();
    duration += (e.get_profiling_info<info::event_profiling::command_end>() -
    e.get_profiling_info<info::event_profiling::command_start>()) /1000.0f/1000.0f;
    return(duration);
}
// return execution time
double cpu_kernel(float *cA, float *cB, float *cC, int M, int N, int K) {
    double duration = 0.0;
    std::chrono::high_resolution_clock::time_point s, e;
    // Single Thread Computation in CPU 
    s = std::chrono::high_resolution_clock::now();
    for(int i = 0; i < M; i++) {
        for(int j = 0; j < N; j++) {
            float sum = 0.0f;
            for(int k = 0; k < K; k++) {
                sum +=  cA[i * K + k] * cB[k * N  + j];
            }
            cC[i * N + j] = sum;
        }
    }
    e = std::chrono::high_resolution_clock::now();
    duration = std::chrono::duration<float, std::milli>(e - s).count();
    return(duration);
}
int verify(float *cpu_res, float *gpu_res, int length){
    int err = 0;
    for(int i = 0; i < length; i++) {
       if( fabs(cpu_res[i] - gpu_res[i]) > 1e-3) {
          err++;
          printf("\n%lf, %lf", cpu_res[i], gpu_res[i]);
       } 
    }
    return(err);
}
int gemm(const int M, 
         const int N, 
         const int K, 
         const int block_size,
         const int iterations, 
         sycl::queue &q) {
  cout << "Problem size: c(" << M << "," <<  N << ") ="
       << " a(" << M << "," << K << ") *" 
       << " b(" << K << "," << N << ")\n";
 
  auto A = malloc_shared<float>(M * K, q);
  auto B = malloc_shared<float>(K * N, q);
  auto C = malloc_shared<float>(M * N, q);
  auto C_host = malloc_host<float>(M * N, q);
  // init the A/B/C
  for(int i=0; i < M * K; i++) {
      A[i] = random_float();
  }
  for(int i=0; i < K * N; i++) {
      B[i] = random_float();
  }
  for(int i=0; i < M * N; i++) {
      C[i] = 0.0f;
      C_host[i] = 0.0f;
  }
  double flopsPerMatrixMul
      = 2.0 * static_cast<double>(M) * static_cast<double>(N) * static_cast<double>(K);
  double duration_gpu = 0.0f;
  double duration_cpu = 0.0f;
  // GPU compuation and timer 
  int warmup = 10;
  for (int run = 0; run < iterations + warmup; run++) {
    float duration = gpu_kernel(A, B, C, M, N, K, block_size, q);
    if(run >= warmup) duration_gpu += duration;
  }
  duration_gpu = duration_gpu / iterations;
  // CPU compuation and timer 
  warmup = 2;
  for(int run = 0; run < iterations/2 + warmup; run++) {
      float duration = cpu_kernel(A, B, C_host, M, N, K);
      if(run >= warmup) duration_cpu += duration;
  }
  duration_cpu = duration_cpu / iterations/2;
  // Compare the resutls of CPU and GPU 
  int errCode = 0;
  errCode = verify(C_host, C, M*N);
  if(errCode > 0) printf("\nThere are %d errors\n", errCode);
  printf("\nPerformance Flops = %lf, \n" 
          "GPU Computation Time = %lf (ms); \n"
          "CPU Computaiton Time = %lf (ms); \n", 
          flopsPerMatrixMul, duration_gpu, duration_cpu);
 
  free(A, q);
  free(B, q);
  free(C, q);
  free(C_host, q);
  return(errCode);
}
 
int main() {
  auto propList = cl::sycl::property_list {cl::sycl::property::queue::enable_profiling()};
  queue my_gpu_queue( cl::sycl::gpu_selector_v , propList);
  int errCode = gemm(2000, 2000, 2000, 4, 10, my_gpu_queue);
  return(errCode);
}

可通过修改MNK值决定矩阵参数,实现不同结果进行比较,此例设置M=N=K=2000

运行结果:

二、练习二

代码如下:

#include <chrono>
#include <iostream>
#include <CL/sycl.hpp>
#define random_float() (rand() / double(RAND_MAX))
using namespace std;
using namespace sycl;
#define tileY 2 
#define tileX 2
// return execution time
double gpu_kernel(float *A, float *B, float *C, 
                  int M, int N, int K, 
                  int BLOCK, sycl::queue &q) {
  // define the workgroup size and mapping
  auto grid_rows = M / tileY;
  auto grid_cols = N / tileX;
  auto local_ndrange  = range<2>(BLOCK, BLOCK);
  auto global_ndrange = range<2>(grid_rows, grid_cols);
  double duration = 0.0f;
  auto e = q.submit([&](sycl::handler &h) {
      h.parallel_for<class k_name_t>(
          sycl::nd_range<2>(global_ndrange, local_ndrange), [=](sycl::nd_item<2> index) {
              int row = tileY * index.get_global_id(0);
              int col = tileX * index.get_global_id(1);
              float sum[tileY][tileX] = {0.0f};
              float subA[tileY] = {0.0f};
              float subB[tileX] = {0.0f};
               // core computation
              for (int k = 0; k < N; k++) {
                // read data to register
                for(int m = 0; m < tileY; m++) {
                    subA[m] = A[(row + m) * N + k];
                } 
                for(int p = 0; p < tileX; p++) {
                    subB[p] = B[k * N + p + col];
                } 
                for (int m = 0; m < tileY; m++) {
                  for (int p = 0; p < tileX; p++) {
                    sum[m][p] += subA[m] * subB[p];
                  }
                }
              } //end of K
              // write results back
              for (int m = 0; m < tileY; m++) {
                for (int p = 0; p < tileX; p++) {
                  C[(row + m) * N + col + p] = sum[m][p];
                }
              }
          });
    });
    e.wait();
    duration += (e.get_profiling_info<info::event_profiling::command_end>() -
    e.get_profiling_info<info::event_profiling::command_start>()) /1000.0f/1000.0f;
    return(duration);
}
// return execution time
double cpu_kernel(float *cA, float *cB, float *cC, int M, int N, int K) {
    double duration = 0.0;
    std::chrono::high_resolution_clock::time_point s, e;
    // Single Thread Computation in CPU 
    s = std::chrono::high_resolution_clock::now();
    for(int i = 0; i < M; i++) {
        for(int j = 0; j < N; j++) {
            float sum = 0.0f;
            for(int k = 0; k < K; k++) {
                sum +=  cA[i * K + k] * cB[k * N  + j];
            }
            cC[i * N + j] = sum;
        }
    }
    e = std::chrono::high_resolution_clock::now();
    duration = std::chrono::duration<float, std::milli>(e - s).count();
 
    return(duration);
}
int verify(float *cpu_res, float *gpu_res, int length){
    int err = 0;
    for(int i = 0; i < length; i++) {
       if( fabs(cpu_res[i] - gpu_res[i]) > 1e-3) {
          err++;
          printf("\n%lf, %lf", cpu_res[i], gpu_res[i]);
       } 
    }
    return(err);
}
int gemm(const int M, 
         const int N, 
         const int K, 
         const int block_size,
         const int iterations, 
         sycl::queue &q) {
  cout << "Problem size: c(" << M << "," <<  N << ") ="
       << " a(" << M << "," << K << ") *" 
       << " b(" << K << "," << N << ")\n";
  auto A = malloc_shared<float>(M * K, q);
  auto B = malloc_shared<float>(K * N, q);
  auto C = malloc_shared<float>(M * N, q);
  auto C_host = malloc_host<float>(M * N, q);
  // init the A/B/C
  for(int i=0; i < M * K; i++) {
      A[i] = random_float();
  }
  for(int i=0; i < K * N; i++) {
      B[i] = random_float();
  }
  for(int i=0; i < M * N; i++) {
      C[i] = 0.0f;
      C_host[i] = 0.0f;
  }
  double flopsPerMatrixMul
      = 2.0 * static_cast<double>(M) * static_cast<double>(N) * static_cast<double>(K);
  double duration_gpu = 0.0f;
  double duration_cpu = 0.0f;
  // GPU compuation and timer 
  int warmup = 10;
  for (int run = 0; run < iterations + warmup; run++) {
    float duration = gpu_kernel(A, B, C, M, N, K, block_size, q);
    if(run >= warmup) duration_gpu += duration;
  }
  duration_gpu = duration_gpu / iterations;
  // CPU compuation and timer 
  warmup = 2;
  for(int run = 0; run < iterations/2 + warmup; run++) {
      float duration = cpu_kernel(A, B, C_host, M, N, K);
      if(run >= warmup) duration_cpu += duration;
  }
  duration_cpu = duration_cpu / iterations/2;
  // Compare the resutls of CPU and GPU 
  int errCode = 0;
  errCode = verify(C_host, C, M*N);
  if(errCode > 0) printf("\nThere are %d errors\n", errCode);
  printf("\nGEMM size M = %d, N = %d, K = %d", M, N, K);
  printf("\nWork-Group size = %d * %d, tile_X = %d, tile_Y = %d", block_size, block_size, tileX, tileY);
  printf("\nPerformance Flops = %lf, \n" 
          "GPU Computation Time = %lf (ms); \n"
          "CPU Computaiton Time = %lf (ms); \n", 
          flopsPerMatrixMul, duration_gpu, duration_cpu);
 
  free(A, q);
  free(B, q);
  free(C, q);
  free(C_host, q);
  return(errCode);
}
int main() {
  auto propList = cl::sycl::property_list {cl::sycl::property::queue::enable_profiling()};
  queue my_gpu_queue( cl::sycl::gpu_selector_v , propList);
  int errCode = gemm(512, 512, 512, /* GEMM size, M, N, K */
                     4,             /* workgroup size */ 
                     10,            /* repeat time */   
                     my_gpu_queue);
  return(errCode);
}

测试不同tile_X和tile_Y大小下( tile_X和tile_Y可以不一致),矩阵计算的性能

运行结果:

(2,2)

(2,4)

(2,8)

(4,2)

(8,2)

 分析:

1.在tileX,tileY的变化中,可以看到CPU执行时间基本没有改变,说明其变化对于CPU来说并无太大影响。

2.保持tileX不变,当tileY增大时,GPU执行时间有所改变,但改变较小,说明其改变对GPU执行时间影响较小;保持tileY不变,当tileX增大时,GPU执行时间变化较大,说明tileX的变化对GPU执行时间影响很大。

3.当tileX和tileY达到8以上时GPU和CPU执行时间有很大概率爆掉,出现错误现象,下面列出两组错误数据:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值