如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例 1:输入:
["MedianFinder","addNum","addNum","findMedian","addNum","findMedian"]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]
示例 2:输入:
["MedianFinder","addNum","findMedian","addNum","findMedian"]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/shu-ju-liu-zhong-de-zhong-wei-shu-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
对于这道题原本想采用下面的做法,但是这样做的话,每一次排序的开销非常大,并且官方的测试用例中有非常多次的插入和查询中位数的操作,所以下面的代码在面对非常庞大的测试用例的时候就会超时。
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
result.push_back(num);
cout<<num<<endl;
sort(result.begin(),result.end());
}
double findMedian() {
cout<<result.size()<<endl;
if(result.size()%2==1)
{
return result[result.size()/2];
}
else
{
return (double)((result[result.size()/2.0-1.0]+result[result.size()/2.0])/2.0);
}
}
private:
vector<int> result;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/
如何进一步地提升我们的代码运行的效率这里我们就可以使用一个大根堆和一个小根堆来完成我们这道题。
我们可以将我们当前的数据按照从大到小的顺序分成左边一半,也就是较小的数据,和右边一半,也就是较大的数据。
然后左边的一半的数据建立大根堆,右边一半的数据建立小根堆。
如果这时候我们要查找中位数,就直接将小根堆的堆顶元素和大根堆的堆顶元素相加除二就可以了。
如果这时候新插入一个数据(当前情况是小根堆的size和大根堆的size相等),我们这里采取的策略是保持大根堆的size>=小根堆的size。所以我们可以将新的数据插入到小根堆中,再将小根堆的堆顶元素插入到大根堆中。这时我们大根堆的size为n+1个,小根堆的size为n个,所以我们大根堆的堆顶元素就是我们的中位数。
如果这时候再插入一个数据(当前情况是大根堆的size比小根堆的size大1),我们这里采取的策略是让大根堆和小根堆的size平衡。也就是将我们新插入的元素添加到我们的大根堆中,然后再将大根堆堆顶的元素放入我们的小根堆中,从而让我们的两个堆的size重新实现了平衡。
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
if(left_heap.size()==right_heap.size())
{
right_heap.push(num);
left_heap.push(right_heap.top());
right_heap.pop();
}
else
{
left_heap.push(num);
right_heap.push(left_heap.top());
left_heap.pop();
}
}
double findMedian() {
if(left_heap.size()>right_heap.size())
{
return left_heap.top();
}
else{
return ((left_heap.top()+right_heap.top())/2.0);
}
}
private:
//左侧一半的数据放在大根堆中
priority_queue<int ,vector<int>,less<int>> left_heap;
//右侧一半的数据放在小根堆中
priority_queue<int ,vector<int>,greater<int>> right_heap;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/