目录
3.查看随机森林在不同的树(n_estimators)个数下的表现
4.查看随机森林在不同的误差值下的表现(random_state)
一、集成算法介绍
集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成算法的身影也随处可见,可见其效果之好,应用之广。
1.集成算法的目标
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现。
多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。
通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking。
2.袋装法
装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林。
(bagging,采样n次,构建n个模型,这些模型彼此之间是互相独立,互不干扰的)
3.提升法
提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树。
(每一个基评估器是相关的,按照顺序一一建立。对一次采样,构建一个模型,建完之后我对于判断错误的那些样本,在下一次采样的时候,会增加它们的权重,就是让它们更加有可能会被下一个评估器给取到。也就是说我增加了判错的那些样本的权重,然后我再建一个新的评估器进行评估,评估完毕了之后,我又在下一次增加我持续判错的样本的权重)
(也就是说我在一次一次的建模过程当中,我将模型的方向一次次地调整到一些难以评估的样本,去进行强力预测)
二、sklearn中的集成算法模块ensemble
类 | 类的功能 |
ensemble.AdaBoostClassifier | AdaBoost分类 |
ensemble.AdaBoostRegressor | Adaboost回归 |
ensemble.BaggingClassifier | 装袋分类器 |
ensemble.BaggingRegressor | 装袋回归器 |
ensemble.ExtraTreesClassifier | Extra-trees分类(超树,极端随机树) |
ensemble.ExtraTreesRegressor | Extra-trees回归 |
ensemble.GradientBoostingClassifier | 梯度提升分类 |
ensemble.GradientBoostingRegressor | 梯度提升回归 |
ensemble.IsolationForest | 隔离森林 |
ensemble.RandomForestClassifier | 随机森林分类 |
ensemble.RandomForestRegressor | 随机森林回归 |
ensemble.RandomTreesEmbedding | 完全随机树的集成 |
ensemble.VotingClassifier | 用于不合适估算器的软投票/多数规则分类器 |
集成算法中,有一半以上都是树的集成模型,可以想见决策树在集成中必定是有很好的效果。
三、随机森林
决策树的核心问题有两个,一个是如何找出正确的特征来进行提问,即如何分枝,二是树生长到什么时候应该停下。
对于第一个问题,我们定义了用来衡量分枝质量的指标不纯度,分类树的不纯度用基尼系数或信息熵来衡量,回归树的不纯度用MSE均方误差来衡量。每次分枝时,决策树对所有的特征进行不纯度计算,选取不纯度最低的特征进行分枝,分枝后,又再对被分枝的不同取值下,计算每个特征的不纯度,继续选取不纯度最低的特征进行分枝。
每分枝一层,树整体的不纯度会越来越小,决策树追求的是最小不纯度。因此,决策树会一致分枝,直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。
决策树非常容易过拟合,这是说,它很容易在训练集上表现优秀,却在测试集上表现很糟糕。为了防止决策树的过拟合,我们要对决策树进行剪枝,sklearn中提供了大量的剪枝参数。
RandomForestClassifier
class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’,
criterion=’gini’,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True, oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None)
随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。这一节主要讲解RandomForestClassifier,随机森林分类器。(单个决策树的准确率越高,随机森林的准确率也会越高)
1.重要参数
①控制基评估器的参数
参数 | 含义 |
criterion | 不纯度的衡量指标,有基尼系数和信息熵两种选择 |
max_depth | 树的最大深度,超过最大深度的树枝都会被剪掉 |
min_samples_leaf | 一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生 |
min_samples_split | 一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生 |
max_features | max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃,默认值为总特征个数开平方取整 |
min_impurity_decrease | 限制信息增益的大小,信息增益小于设定数值的分枝不会发生 |
②n_estimators
n_estimators这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。
n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。
(一般来说0-200之间选一个数会比较好)
四、初次使用随机森林
为了更加直观地让大家体会随机森林的效果,我们来进行一个随机森林和单个决策树效益的对比。我们依然使用红酒数据集。
1.导入相关的包和数据
#创建一片森林
#1.导入需要的数据包
#告诉我们的电脑,我们在画图需要这样的一个环境,请帮我将整个我现在运行的这个jupyter的页面都导入这个环境里面
#有助于我们进行画图,一般使用matplotlib的时候都会将其写上
%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
#从sklearn的继承算法模块中导入我们的随机森林分类器
from sklearn.ensemble import RandomForestClassifier
#从我们的sklearn模块的数据集部分导入我们的红酒数据集
from sklearn.datasets import load_wine
2.简单查看数据集
#2.简单查看数据集
wine=load_wine()
wine
#查看wine的特征矩阵
wine.data
#查看我们的标签
wine.target
3.训练模型
#3.实例化
#训练集带入实例化后的模型去进行训练,使用的接口是fit
#使用其他接口将测试集导入我们训练好的模型去获取我们希望获取的结果(score,Y_test)
#导入用于划分训练集和测试集的模块
#在sklearn中,标签和特征必须分开导入进去
from sklearn.model_selection import train_test_split
#第一个参数我们的特征矩阵,第二个参数,我们的标签,第三个参数我们训练集和测试集划分的比例(0.3就是请用30%作为测试集,70%作为训练集)
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)
#实例化决策树
#random_state是用来控制我们树的生成模式的
#决策树自带随机性,倏然random_state让其只能生成一棵树
clf=DecisionTreeClassifier(random_state=0)
#实例化随机森林
#随机森林的random_state也是用来控制随机性的
rfc=RandomForestClassifier(random_state=0)
#使用fit方法,将我们的决策树模型和随机森林模型分别对我们的测试集进行训练
#第一个参数是训练集的特征,第二个参数是训练集的标签
clf=clf.fit(Xtrain,Ytrain)
rfc=rfc.fit(Xtrain,Ytrain)
#使用score,对我们刚刚训练出来的模型在测试集上的预测结果的打分,也就是accuracy,模型的准确度
#第一个参数是测试集的特征,第二个参数是测试集的标签
#给决策树打分(查看在测试集上的准确度)
score_c=clf.score(Xtest,Ytest)
#给随机森林打分(查看在测试集上的准确度)
score_r=rfc.score(Xtest,Ytest)
4.查看打分
#分别将决策树和随机森林的结果进行打分
print("Single Tree:{}".format(score_c),"Random Forest:{}".format(score_r))
#可以从下面的数据中看出随机森林的数据比我们的决策树要好上很多
五、随机森林和决策树对比
1.试试看交叉验证下决策树和随机森林的效果对比
#试试看交叉验证下决策树和随机森林的效果对比
#交叉验证:我们希望探求在不同的测试集和训练集上,模型究竟有多么的稳定
#我们使用同样的数据和特征矩阵,但是我们将这个特征矩阵划分为n份,
#依次取每一份作为测试集,剩下的n-1份作为训练集,多次训练来观测模型的稳定性
#交叉验证cross_val_score
#交叉验证中我们不需要自己划分训练集和测试集,按照我们上面的说法
#交叉验证或自己划分训练集和测试集,所以我们需要传入完整的特征矩阵和标签
from sklearn.model_selection import cross_val_score
#用来画线
import matplotlib.pyplot as plt
#实例化随机森林
#n_estimators这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。
rfc=RandomForestClassifier(n_estimators=25)
#第一个参数:实例化的模型
#第二个参数:完整的没有分裂之前的特征矩阵
#第三个参数:完整的标签
#第四个参数:交叉验证的次数,也就是将我们的数据分成了十份,依次一份作为训练集,其余九份作为测试集,直到十份都被验证过
rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10)
#实例化决策树
clf=DecisionTreeClassifier()
clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)
#绘制曲线
#range(1,11)也就是从1,,2,,3,,4,,5,,6,,7,,8,9,10,也就是我们的X轴,也就是对应我们交叉验证的次数
plt.plot(range(1,11),rfc_s,label="RandomForest")
plt.plot(range(1,11),clf_s,label="DecisionTree")
#显示图例
plt.legend()
#将图像显示出来
plt.show()
#从下面的图中可以看出,在十次交叉验证的情况下,虽然有时候我们的决策树能够达到和随机森林一样的准确率
#但是我们的随机森林在大多数情况下的准确率都是要高于我们的决策树的
2.在十组交叉验证下的效果对比
#随机森林和决策树在十组交叉验证下的对比
#创建两个列表分别板寸我们随机森林和决策树的数据
rfc_l = []
clf_l = []
#进行十组交叉验证
for i in range(10):
rfc = RandomForestClassifier(n_estimators=25)
#十次交叉验证取平均值
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
#将得到的数据追加到结果列表中去
rfc_l.append(rfc_s)
clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()
clf_l.append(clf_s)
plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()
#从下面的图中我们可以看出随机森林的效果比决策树好很多了。
#从下面的图中我们可以看出随机森林和决策树的大致曲线走向其实是相似的,哪里上升,哪里下降,都是对应的
#因为决策树的效果越好,随机森林的效果也越好
#所以说本质上这两条曲线的波动应该是一致的(如果有不相符的,可能是因为那一块的测试集和训练集的划分比较特殊)
3.查看随机森林在不同的树(n_estimators)个数下的表现
superpa = []
#让随机森林在不同的n_estimators下跑了200次,也就是从1-200,
#然后分别绘制十次交叉验证的准确率,追加到结果列表中
for i in range(200):
#让树第一次建一棵,第二次建两棵,最后一直建到200棵
#n_jobs指的是调用cpu的进程数量,比如n_jobs=8,会看到任务管理器中会有8个cpu进程,是为了加速运行。n_jobs=-1表示使用CPU所有的线程数进行运算,起到并行加速的作用
rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1)
#得到十次交叉验证的平均值放入我们的结果列表中
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
superpa.append(rfc_s)
#打印出最高的准确率和最高的准确率所在的位置
#list.index(object) 对象object在列表list当中的索引,下面的代码就是返回最大值和最大值所在的索引
print(max(superpa),superpa.index(max(superpa)))
plt.figure(figsize=[20,5])
plt.plot(range(1,201),superpa)
plt.show()
#可以看出我们的曲线不太稳定
#但是从0-20都是呈现出上升的趋势
#也就是说随着n_estimators的上升,我们的随机森林的效果会越来越好
#但是到达了某一个值之后,就会维持在某一个范围波动,不会一直上升直到100%,不会无限制地趋近于100%
#下面打印出来的数据就是说在树有24+1,也就是25棵(下标从0开始)的时候能够达到最高的准确率0.9888888888888889
4.查看随机森林在不同的误差值下的表现(random_state)
随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决原则来决定集成评估器的结果。在刚才的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε),那20棵树以上都判断错误的可能性是: 其中,i是判断错误的次数,也是判错的树的数量,ε是一棵树判断错误的概率,(1-ε)是判断正确的概率,共判对25-i次。采用组合,是因为25棵树中,有任意i棵都判断错误
import numpy as np
#comb是一个用于求组合的模块
from scipy.special import comb
#下面的这个代码(列表推导式)是为了求出我们上面的这个公式的值
#将所有的组合都求出来放入列表中,最后再加和
np.array([comb(25,i)*(0.2**i)*((1-0.2)**(25-i)) for i in range(13,26)]).sum()
#我们也就得到了我们的错误率
①限定了random_state为什么还有随机性
可见,判断错误的几率非常小,这让随机森林在红酒数据集上的表现远远好于单棵决策树。 那现在就有一个问题了:我们说袋装法服从多数表决原则或对基分类器结果求平均,这即是说,我们默认森林中的每棵树应该是不同的,并且会返回不同的结果。设想一下,如果随机森林里所有的树的判断结果都一致(全判断对或全判断错),那随机森林无论应用何种集成原则来求结果,都应该无法比单棵决策树取得更好的效果才对。但我们使用了一样的类DecisionTreeClassifier,一样的参数,一样的训练集和测试集,为什么随机森林里的众多树会有不同的判断结果? 问到这个问题,很多小伙伴可能就会想到了:sklearn中的分类树DecisionTreeClassifier自带随机性,所以随机森林中的树天生就都是不一样的。我们在讲解分类树时曾提到,决策树从最重要的特征中随机选择出一个特征来进行分枝,因此每次生成的决策树都不一样,这个功能由参数random_state控制。 随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。
rfc = RandomForestClassifier(n_estimators=20,random_state=2)
rfc = rfc.fit(Xtrain, Ytrain)
#随机森林的重要属性之一:estimators,查看森林中树的状况
#取出第0号树,查看它的random_state
rfc.estimators_[0].random_state
#为什么要使用循环的方式取出树的random_state
#模型中的每一个树的类型是sklearn特有的,不能用pandas之类的包一次性取出
type(rfc.estimators_[0])
#如果放入dataframe中就会变成一个个字符了,就不再具有这种可以使用.random_state调出其参数的性质了
#所以我们没有办法使用pandas或者numpy将其中的random_state一次性调取出来
rfc.estimators_[0]
#采用循环的方式调取树的random_state
for i in range(len(rfc.estimators_)):
print(rfc.estimators_[i].random_state)
#如果之前的随机森林中的参数加了random_state,这段代码无论执行多少次,生成的组合都是不会发生变化的
#也就是说生成的森林是一定的,其中的每一棵树都是不同的
我们可以观察到,当random_state固定时,随机森林中生成是一组固定的树,但每棵树依然是不一致的,这是用”随机挑选特征进行分枝“的方法得到的随机性。并且我们可以证明,当这种随机性越大的时候,袋装法的效果一般会越来越好。用袋装法集成时,基分类器应当是相互独立的,是不相同的。 但这种做法的局限性是很强的,当我们需要成千上万棵树的时候,数据不一定能够提供成千上万的特征来让我们构筑尽量多尽量不同的树。因此,除了random_state。我们还需要其他的随机性。
5.bootstrapt &oob_score
要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。 在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类器,我们的基分类器自然也就各不相同了。 bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False
然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能被忽略,一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为: (在一个自助集中,只要n次中有一次抽到这个样本,这个样本就算是被抽到了,所以我们只需要用1减去n次中都没抽到的概率,就能够得到抽到的概率) 这里我们需要用到两个重要极限中的第二个:当x趋近于无穷的时候 (我们再将上面公式中的-n看成这个第二个重要极限中的x,就能够得到) 当n足够大时,这个概率收敛于1-(1/e),约等于0.632。因此,会有约37%的训练数据被浪费掉,没有参与建模,这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可以被用来作为集成算法的测试集(因为它们没有被参与到训练(我们导入了这些数据,但是模型没有选择它们))。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外 数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉落在袋外,自然也就无法使用oob数据来测试模型了。 如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果:
#无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25,oob_score=True)
rfc = rfc.fit(wine.data,wine.target)
#重要属性oob_score_
rfc.oob_score_
六、重要属性和接口
接口是什么:参数是在模型生成的时候传入,用来将模型具体化的,比防说告诉我们的模型想要一个什么样子的随机森林。属性是我们可以从随机森林中调用的一些性质。接口使用来调用我们输入测试集之后的结果的,也是用来训练的(fit) 我们将数据从接口中传入,接口就会给我们返回我们想要的测试结果,这个测试结果可以是我们预测出来的标签值,也可以我们的分数accuracy,也可以是其他的一些测试完毕的一些属性。 除了这.estimators_ 和 .oob_score_ 这两个重要属性之外,作为树模型的集成算法,随机森林自然也有.feature_importances_这个属性。 随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类。
1.score
rfc = RandomForestClassifier(n_estimators=25)
#输入测试集的特征矩阵和特征标签
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest,Ytest)
2.feature_importances_
#得出所有的特征当中的重要性。
#数值越大,特征越重要
rfc.feature_importances_
将特证名和特征的重要性拼接起来
[*zip(wine.feature_names,rfc.feature_importances_)]
3.apply
#输入测试集,返回测试集中每一个样本在我们的每一棵树中的叶子结点的索引
rfc.apply(Xtest)
4.predict
#输入测试集,返回我们对于测试集的预测标签(不是正确结果,正确结果在Ytest中)
rfc.predict(Xtest)
5.predict_proba
#对每一个样本返回三个值,返回每一个样本对应每一类标签的概率(有多少个样本就会返回多少行)
rfc.predict_proba(Xtest)
七、何时使用森林Bonus
之前我们说过,在使用袋装法时要求基评估器要尽量独立。其实,袋装法还有另一个必要条件:基分类器的判断准确率至少要超过随机分类器,也就是说,基分类器的判断准确率至少要超过50%。之前我们已经展示过随机森林的准确率公式,基于这个公式,我们画出了基分类器的误差率ε和随机森林的误差率之间的图像。
import numpy as np
x = np.linspace(0,1,20)
y = []
#看看在不同的epsilon的条件下我们的误差会有什么表现
#误差率在0-1变动的时候,随机森林的准确率
for epsilon in np.linspace(0,1,20):
E = np.array([comb(25,i)*(epsilon**i)*((1-epsilon)**(25-i))
for i in range(13,26)]).sum()
y.append(E)
plt.plot(x,y,"o-",label="when estimators are different")
plt.plot(x,x,"--",color="red",label="if all estimators are same")
plt.xlabel("individual estimator's error")
plt.ylabel("RandomForest's error")
plt.legend()
plt.show()
#红色的虚线:如果所有的评估器都相同,那么森林的准确率无法做到比一棵单独的树的准确率更高
#所以说基分类器的准确率是多少,咱随机森林的准确率也就是多少,所以就是一条倾斜角为45度的直线
#蓝色的实线:当基分类器是不同的时候,它呈现出一种误差率逐渐上升变快的趋势,
#尤其是基分类器的误差小于0.5的时候,可以观察到随机的基分类器的误差是要比相同的基分类器的误差要小的
#也就是蓝线在红线的下面
#但是当我们的基分类器的误差大于0.5的时候,可以观察到随机的基分类器的误差是要比相同的基分类器的误差要大的
#也就是蓝线远远地在红线的上面
#也就是说我们如果想要让森林的算法的准确率优于单棵树的准确率,我们必须保证单棵树的误差在0.5以下
可以从图像上看出,当基分类器的误差率小于0.5,即准确率大于0.5时,集成的效果是比基分类器要好的。相反,当基分类器的误差率大于0.5,袋装的集成算法就失效了。所以在使用随机森林之前,一定要检查,用来组成随机森林的分类树们是否都有至少50%的预测正确率。