森林图

森林图

以统计指标和统计分析方法为基础,用数值计算绘制出的图形,通常是在平面直角坐标系中,以一条垂直的无效

线(0或者1)为中心,用平衡于x轴的多条线段描述每个组指标的中值和可信区间,最后一行用菱形或者其他图形描述的多个组别合并的效应量和可信区间;

森林图解读:

x轴的每个线段:代表每个研究

黑点: 每个研究的点估计值

方块: 代表每个研究所占的权重,权重越大,面积越大,上图中的weight表示的就是权重

60%,占的比重大,所以方块最大;

线段长度:代表研究量的95%可信区间(CI)

箭头:研究的95%可信区间超过了图形的显示范围,所以用箭头表示

菱形中心:代表汇总表结果的点估计值,并用一条垂直x轴的虚线标出

菱形宽度汇总结果的95%可信区间

二分类变量森林图

HR(风险比)

通常以点估计值,也就是x值为1的作为无效线,上图就是,无效线的左侧为因素a,左侧为因素b,

当无效线与横线相交,不能认为a,b因素对结局事件发生风险的影响作用不同

### 关于处理森林中的缺失值 在创建森林时遇到`NA`(即缺失值),无论是使用R还是Python库,都需要特别注意如何处理这些缺失的数据点以确保表的有效性和准确性。 #### 使用R绘制森林并处理缺失值 对于R语言而言,在构建森林之前可以先清理数据集内的缺失值。例如,当利用`metafor`包来制作森林时,可以通过预先筛选掉含有`NA`的行或者填充合理的数值替代它们[^1]: ```r library(metafor) # 假设df是一个包含效应量及其标准误的数据框 clean_df <- df[complete.cases(df), ] # 删除任何有NA的记录 res <- rma(yi, vi, data = clean_df) # 进行元分析计算 forest(res) # 绘制森林 ``` 如果希望保留原始数据结构而不删除带有`NA`的观测,则可以选择用均值或其他统计方法填补缺失位置后再绘。 #### 利用Python实现带缺失值处理的森林 而在Python环境中,通常会借助`matplotlib`加上专门用于医学研究领域数据分析的`statsmodels`或第三方扩展如`forestplot`来进行操作。同样地,面对存在`NaN`的情况,应该采取适当措施解决这个问题再继续作过程[^3]: ```python import pandas as pd from matplotlib import pyplot as plt from statsmodels.stats.meta_analysis import combine_effects import forestplot as fp # 加载数据至DataFrame对象dataframe中... # 对应列名分别为effect_size和stderr代表各研究的效果大小及标准误差 mask = ~pd.isnull(dataframe['effect_size']) & ~pd.isnull(dataframe['stderr']) filtered_data = dataframe[mask] ci_low, ci_upp = combine_effects(filtered_data.effect_size.values, filtered_data.stderr.values).conf_int() fig, ax = plt.subplots() fp.forestplot(ax=ax, estimates=filtered_data.effect_size.tolist(), cis=[ci_low.tolist(), ci_upp.tolist()], study_labels=['Study ' + str(i+1) for i in range(len(filtered_data))], xlabel='Effect Size') plt.show() ``` 上述代码片段展示了两种不同编程环境下针对可能存在缺失项的数据源生成森林的方法,并且都包含了对潜在`NA/NaN`问题解决方案的一部分介绍。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值