我们提供三种模型的下载方式,可根据自己的情况进行选择。推荐使用第三种方法下载模型,若您有稳定足够的 Clash
流量,使用第二种方法是最快的,若您是Linux系统建议使用第三种。
一、 直接下载
打开 Models - Hugging Face, 搜索需要的模型 deepseek-ai/DeepSeek-R1-Distill-Llama-70B · Hugging Face,然后复制地址进行下载。
git clone https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
若不能直接访问 Hugging Face 可使用镜像网址 hf-mirror
git clone https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
二、Python 下载
1. 安装Huggingface_hub
最直觉是用 git clone
来下载模型,但是因为 LLM
每个一部分都按 GB
来计算,避免出现 OOM Error
的情况,简单用 Python
写一个 download.py
比较简单。
pip install huggingface_hub
2. 创建 Python 文件
新增 dwnload.py
,写入:
from huggingface_hub import snapshot_download
model_id="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
snapshot_download(repo_id=model_id, local_dir="deepseek-r1-distill-qwen-1.5b",
local_dir_use_symlinks=False, revision="main")
其中,model_id
指定(Hugging Face) 上需要下载的模型名称, 可直接搜索你需要下载的模型,在模型主页左上角复制模型名称即可替换为自己的,这里我以 deepseek-r1:1.5b
为例。local_dir
指定模型下载后保存的本地路径,根据需要更改为自己的路径,默认以执行命令路径为相对路径。
3. 执行下载
从 Clash
端口终端以管理员方式运行 PowerShell
,执行下述命令运行:
cd E:\Project
python download.py
三、使用ModelScope 包下载模型
1. 安装 ModelScope 包
ModelScope 是一个模型中心,我们使用它来下载模型。在终端或命令提示符中执行以下命令安装
pip install modelscope
2. 下载模型
使用 modelscope download
命令下载模型 Qwen/Qwen2.5-Math-1.5B · Hugging Face
modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --local_dir /home/models/deepseek-1.5b
其中,--model your_model: 指定要下载的模型为
deepseek-ai/DeepSeek-R1-Distill-Llama-1.5B 。
–local_dir your_local_path: 指定模型下载后保存的本地路径。请将
your_local_path替换为您电脑上实际想要保存模型的路径。例如,如果您想将模型保存在
/home/user/models/deepseek-70b` 目录下。