NNDL 作业9 RNN-SRN简单循环神经网络 [HBU]

目录

知识预备

1. 实现SRN

(1)使用Numpy

(2)在1的基础上,增加激活函数tanh

(3)使用nn.RNNCell实现

(4)使用nn.RNN实现

2. 实现“序列到序列”

3. “编码器-解码器”的简单实现

4.简单总结nn.RNNCell、nn.RNN

nn.RNNCell

nn.RNN

5.谈一谈对“序列”、“序列到序列”的理解

6.总结本周理论课和作业,写心得体会

作业布置来自河北大学-魏老师博客:【23-24 秋学期】NNDL 作业9 RNN - SRN-CSDN博客


知识预备

简单循环网络(Simple Recurrent Network,SRN)只有一个隐藏层的神经网络.下图是关于简单循环网络的介绍,来自邱锡鹏《神经网络与深度学习》:

循环神经网络的参数与基本结构


1. 实现SRN

(1)使用Numpy

根据图示的简单循环神经网络结构,实现流程与代码如下:

import numpy as np

#初始化权值,共有8个w权值
w1,w2,w3,w4,w5,w6,w7,w8 = 1.,1.,1.,1.,1.,1.,1.,1.
#u是隐藏层至存储器连接线上的权重值
u1,u2,u3,u4 = 1.,1.,1.,1.

#初始化输入序列
inputs_seq = np.array(
    [
        [1,1],
        [1,1],
        [2,2]
    ],dtype=float
)
print('inputs_seq: ','\n',inputs_seq)

#初始化存储器
state_t = np.zeros(2)
print('state_t is :',state_t)
print('---------------------------')
for i in inputs_seq:
    print('=========')
    print('inputs is:',i)
    print('state_t is:',state_t)

    in_h1 = np.dot([w1,w3],i) + np.dot([u2,u4],state_t)
    in_h2 = np.dot([w2,w4],i) + np.dot([u1,u3],state_t)

    state_t = in_h1,in_h2 #更新存储器,为隐藏层的值

    out_y1 = np.dot([w5,w7],[in_h1,in_h2])
    out_y2 = np.dot([w6,w8],[in_h1,in_h2])

    print('outputs_y1,y2 is:',out_y1,out_y2)

运行结果为:


(2)在1的基础上,增加激活函数tanh

在第一问的基础上,将in_h1,in_2的值再激活一次,存入到存储器(延时单位)中:

import numpy as np

#初始化权值,共有8个w权值
w1,w2,w3,w4,w5,w6,w7,w8 = 1.,1.,1.,1.,1.,1.,1.,1.
#u是隐藏层至存储器连接线上的权重值
u1,u2,u3,u4 = 1.,1.,1.,1.

#初始化输入序列
inputs_seq = np.array(
    [
        [1,1],
        [1,1],
        [2,2]
    ],dtype=float
)
print('inputs_seq: ','\n',inputs_seq)

#初始化存储器
state_t = np.zeros(2)
print('state_t is :',state_t)
print('---------------------------')
for i in inputs_seq:
    print('=========')
    print('inputs is:',i)
    print('state_t is:',state_t)

    # in_h1 = np.dot([w1,w3],i) + np.dot([u2,u4],state_t)
    # in_h2 = np.dot([w2,w4],i) + np.dot([u1,u3],state_t)

    #添加激活函数tanh
    in_h1 = np.tanh(np.dot([w1,w3],i) + np.dot([u2,u4],state_t))
    in_h2 = np.tanh(np.dot([w2,w4],i) + np.dot([u1,u3],state_t))

    state_t = in_h1,in_h2 #更新存储器,为隐藏层的值

    out_y1 = np.dot([w5,w7],[in_h1,in_h2])
    out_y2 = np.dot([w6,w8],[in_h1,in_h2])

    print('outputs_y1,y2 is:',out_y1,out_y2)

运行结果:


(3)使用nn.RNNCell实现

>关于RNNCell和RNN的用法详细看这篇博客:

【PyTorch学习笔记】21:nn.RNN和nn.RNNCell的使用-CSDN博客

看不明白的可以去B站找课听,我听了一遍课程视频大概就懂了!

代码:

import torch

batch_size = 1 #批次大小
seq_len = 3 #序列长度
input_size = 2 #输入序列维度
hidden_size = 2 #隐藏层维度
output_size = 2 #输出层维度

#创建一个RNNCell,这是一个RNN单元,接收输入和隐藏层,并输出新的隐藏状态。
#未指定output_size的值,因为RNNCell的输出大小默认为隐藏层大小
cell = torch.nn.RNNCell(input_size=input_size , hidden_size=hidden_size)

#初始化RNNCell参数
for name,param in cell.named_parameters():
    if name.startswith('weight'):
        #权重初始化为1
        torch.nn.init.ones_(param)
    else:
        #偏置初始化为0
        torch.nn.init.zeros_(param)

#线性层(全连接层) 这个全连接层将RNN的隐藏状态映射到输出空间
liner = torch.nn.Linear(hidden_size,output_size)
liner.weight.data = torch.Tensor( [[1,1],[1,1]] ) #权重项设置为1
liner.bias.data = torch.Tensor([0.0])  #偏置项设置为0

#创建输入序列seq
seq = torch.Tensor([
    [[1,1]],
    [[1,1]],
    [[2,2]]
])
#print(seq)

#初始化隐藏状态和输出状态
hidden = torch.zeros(batch_size,hidden_size)
output = torch.zeros(batch_size,output_size)

#查看一下hidden和output的状态
print('hidden:',hidden,'hidden.shape:',hidden.shape)
print('output:',output,'output.shape:',output.shape)
print('-' * 30) #分割线

#在序列上循环,使用RNNCell进行前向传播
#将输入和当前隐藏状态传递给RNNCell,得到新的隐藏状态
for idx,input in enumerate(seq):
    print('='*10 , idx, '='*10) #分割线

    print('Input :',input)
    print('hidden :',hidden)

    hidden = cell(input,hidden)
    print('cell_hidden is:',hidden)

    output = liner(hidden) #将hidden放入到线性层中进行前向传播
    print('output is :',output)

结果为:


(4)使用nn.RNN实现

代码为:

import torch

batch_size = 1 #批次大小
seq_len = 3 #序列长度
input_size = 2 #输入序列维度
hidden_size = 2 #隐藏层维度
output_size = 2 #输出层维度
num_layers = 1 #RNN层数

#创建RNN单元,指定输入 隐藏层大小和层数
cell = torch.nn.RNN(input_size=input_size,hidden_size=hidden_size
                    ,num_layers=num_layers)

#初始化RNN参数
for name,param in cell.named_parameters():
    if name.startswith('weight'):
        #权重初始化为1
        torch.nn.init.ones_(param)
    else:
        #偏置初始化为0
        torch.nn.init.zeros_(param)

#线性层(全连接层)
liner = torch.nn.Linear(hidden_size,output_size)
liner.weight.data = torch.Tensor( [[1,1],[1,1]] ) #权重项设置为1
liner.bias.data = torch.Tensor([0.0])  #偏置项设置为0

#创建输入序列seq
input_seq = torch.Tensor([
    [[1,1]],
    [[1,1]],
    [[2,2]]
])
#print(input_seq)

#在前向传播之前,需要初始化隐藏状态和输出状态
hidden = torch.zeros(num_layers,batch_size,hidden_size)
output,hidden = cell(input_seq,hidden)
#查看一下hidden和output的状态
print('hidden:',hidden,'hidden.shape:',hidden.shape)
print('output:',output,'output.shape:',output.shape)
print('-' * 30) #分割线

print('Input :',input_seq[0])
print('hidden:',0,0)
print('Output:',liner(output[0]))
print('-' * 20)

print('Input :',input_seq[1])
print('hidden:',output[0])
print('Output:',liner(output[1]))
print('-' * 20)

print('Input :',input_seq[2])
print('hidden:',output[1])
print('Output:',liner(output[2]))

结果为:


2. 实现“序列到序列”

观看视频,学习RNN原理,并实现视频P12中的教学案例

12.循环神经网络(基础篇)_哔哩哔哩_bilibili

   * 观看视频的笔记和总结我写到了最后


3. “编码器-解码器”的简单实现

# code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# ?: Symbol that will fill in blank sequence if current batch data size is short than n_step

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)


'''
enc_input_all: [6, n_step+1 (because of 'E'), n_class]
dec_input_all: [6, n_step+1 (because of 'S'), n_class]
dec_output_all: [6, n_step+1 (because of 'E')]
'''
enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
            enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

运行结果:


4.简单总结nn.RNNCell、nn.RNN

我更倾向于看官网的介绍,不仅可以锻炼英语能力,还能看到准确无误的一手信息

nn.RNNCell

 pytorch官网链接:RNNCell — PyTorch 2.1 documentation

官网图如下,首先介绍了RNNCell的各个parameters参数:input_size,hidden_size,bias,dtype, nonlinearity指非线性激活函数,device目前没有接触过,译为装置。

以下图片 介绍了输入层,隐藏层,输出层以及存储单元中的数据信息、每一层的数据形状

以下介绍了Variables变量,weight和bias:

同时官网还给出了示例代码,我运行了一遍后,结果如下:

输出了很长很长的output,由于output是list类型的,不可以直接使用.shape去查看它的形状,所以我取了output[0],对这其中一维进行数据查看,比对形状:

结果为:

可以看到,output的长度为6。我们输出了output[0],并且查看了output[0]的形状为[3,20],这都与输入数据形状和隐藏数据的形状对应。

B站刘二大人的视频中 对RNN Cell的解释,RNN Cell本质上就是一个线性单元Linear,将RNN Cell拆分开来看,里面有两个线性操作  分别对x和h进行了线性转换操作,但是根据矩阵的性质,我们可以将这两次线性变换操作融合为一次线性操作:

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili

nn.RNN

官网链接:RNN — PyTorch 2.1 documentation

同上,官网首先介绍RNN的参数,相比于RNNCell,RNN所接受的参数更多,除了输入维度、隐藏维度、偏置、非线性激活函数、dtype和device,还增加了num_layers (RNN层数)、batch_first、dropout 和bidirectional(翻译为‘双向’)。 

再介绍输入层和隐藏状态:

输出层的信息:

变量信息:

而后官网贴出了一个例子,我们试着运行一下:

最终显示了output和最终隐藏状态h0的形状。

在B站 刘二大人的视频中展示了使用RNN时 输入数据、隐层以及输出数据的形状:

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili

num_layers的设置,致使循环神经网络的结构变成如下:


5.谈一谈对“序列”、“序列到序列”的理解

借鉴文章:序列到序列模型,了解一下 - 知乎 (zhihu.com)

“序列”和“序列到序列”这两个概念通常在自然语言处理和机器学习领域中使用。

“序列”通常指的是一组有序的数据,其中每个数据都称为一个元素或一个符号。这个序列可以是一串文本、一串数字、一串DNA序列等等。在处理这样的数据时,我们通常需要考虑数据的顺序,因为它们是按照某种顺序排列的。

“序列到序列”(Seq2Seq)是一种深度学习模型,它主要用于处理序列到序列的学习问题。这种模型通常用于机器翻译、语音识别、文本摘要等任务。在这些任务中,需要将一个序列(输入序列)转化为另一个序列(输出序列)。Seq2Seq模型通过使用循环神经网络(RNN)来处理这种问题。在Seq2Seq模型中通常使用编码器-解码器架构。编码器将输入序列转化为一个固定长度的向量,而解码器则将这个向量转化为输出序列。这种模型可以处理变长输入和输出序列。

在现实生活中,我能列举的“序列到序列”的例子有:微信语音自动转文字,和Siri对话,AI有声读物等等。


6.总结本周理论课和作业,写心得体会

Hung-yi Lee (ntu.edu.tw)

看完了一遍老师分享的B站视频,分享一下收获与感悟(有些零碎):

>全连接网络的权重数量相比于卷积神经网络的权重值数量是十分大的,这是因为卷积神经网络应用到了“权重共享”。

>RNN专门处理“序列”化(具有时间序列连接关系、先后顺序)的输入数据,同时也会应用到卷积神经网络模型中的“权重共享”,来减少训练时需要的权重值数量。

>RNN Cell的本质就是线性层Linear,可以将某一个维度的数据映射到另外一个维度。与一般Linear的不同之处是,它的输出需要传递给下一时刻。并且在整个循环神经网络中中,RNN Cell的权重值不变,自始至终都使用同一套权重值对x进行线性运算。

>至于为什么在循环神经网络中我们更偏好使用tanh作为激活函数,而不是sigmoid? 是因为tanh的值分布在[-1,+1], 恰好人们偏好分布在[-1,+1]之间的输入,所以就选择了tanh。

> 注意输入输出的维度设置,如下图所示:

>在RNN中,不需要自己手动写循环,它可以自动实现循环。

>num_layers如何在循环神经网络中展示?如下图,每次循环中RNN可以有多个num_layers层次:

>序列到序列(Seq2Seq) 'hello' -> 'ohlol' 例子:

由于hello和ohlol 是字符串 ,不是向量,所以第一步我们要将字符串转换为索引值,构造一个字典,使用索引构成的向量表示每个字母,最后将索引映射为向量。

使用独热编码的方式构造向量(独热向量),实现了文本->向量的转化。

实际上这是一个多分类问题,所以需要接一个softmax函数,对进行了循环操作后的值进行概率上的判断。再计算每个概率的损失,再将损失值融合。这个过程就是交叉熵损失函数的操作过程(有些不太理解)。如下图:

>独热向量的缺点

独热向量的缺点 (直译)为:维度过高、稀疏、硬编码

所以 我们想要将这些缺陷特性转换为:低纬度、稠密、可学习的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛杉矶县牛肉板面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值