多波束测深系统能够同时发射多个声波束,以获取更多深度信息。但在海底地形
起伏变化大的区域,设计合适的测线间隔变得十分复杂,这给多波束测深系统提出了
挑战。 本文通过几何分析建立数学模型,在二维、三维系中分析最优测线布局,希望
能为实际应用中提供参考。
问题一:
问题一中首先通过建立直角坐标系得到海水深度关于测线距中心点处的距离的
表达式。接着将单个测线抽象出来,通过分析几何关系并辅以三角函数得到覆盖宽度
的表达式。然后修正重叠率以适应斜坡的情况,并通过几何关系以及给出其的表达式。
首先对测线距中心点处的距离(称为𝑙)与海水深度(称为𝐷)的关系进行分析,
通过建立直角坐标系可以快速获得𝑙与𝐷之间简洁的表达式。 接着将单个测线抽象出来,
通过分析几何关系并辅以三角函数得到覆盖宽度(称为𝑤) 与𝑙之间的关系。 然后,由
于斜坡上不同的测线的覆盖宽度不同,我们将重叠率(称为𝜇)进行一定的修正后以适
应斜坡的情况,并通过几何关系以及𝜇, 𝑤给出其关于𝑙的表达式。最后计算出不同𝑙下
的𝜇, 𝑤, 𝐷
问题二:
问题二是问题一情景的推广,此问题中𝛽 = 90°时即为第一种情景。在此问题分析
中,我们建立三维坐标系,画出立体图像,从立体图像中抽象出两个二维平面图分析
深度与𝛽角和航行距离之间的关系。将问题二中建立数学模型套入问题一中检验可以
吻合。
问题三:
问题三中建立三维坐标系,再将三维坐标投影成二维得到剖面图进行分析。在此
种情况下若要使测线距离最短我们使用非等间距测线布置,即测线间距随深度变化。
基于此思想,我们建立深度随 y 坐标的变化模型及覆盖宽度随深度变化模型,利用问
题一中的重叠率定义得到间距与覆盖宽度的推到关系,利用逐渐递推式可算出最短航
线条数。
问题四:
问题四中基于问题三的思想,将不规则的曲面通过数据分析及拟合将曲面分成三
部分——平坦地势和两个倾斜角已知的坡面。对于坡面问题可以直接利用问题三中的
模型对其进行求解,而平坦地势只需均匀排布测线即可完成侧线排布,随后再计算题
中要求各值即可。
持续更新中!