一、不安全的并发访问
我们协程是基于线程的,线程出现的安全问题,协程也难免会出现,特别是Java平台上的Kotlin协程实现免不了存在并发调度的问题。常见并发问题:
竞态条件(Race Conditions): 当多个线程或协程试图同时访问和修改共享的资源时,由于执行顺序不确定性而导致的结果不确定性问题。这可能导致数据损坏或不一致性。
死锁(Deadlocks): 当两个或多个线程或协程相互等待对方持有的资源时,导致彼此都无法继续执行的情况。例如,线程 A 持有资源 X,等待资源 Y,而线程 B 持有资源 Y,等待资源 X。
活锁(Livelocks): 类似于死锁,但是线程或协程不是真正被阻塞,而是在重复执行相同的操作,导致无法继续向前推进。
数据竞争(Data Races): 当多个线程或协程同时访问共享的可变数据,并且至少有一个线程进行了写操作时,可能导致未定义的行为或不一致的结果。
资源耗尽(Resource Starvation): 当某个线程或协程长时间占用某个资源而不释放,导致其他线程或协程无法获得该资源而无法继续执行。
下面用竞争状态的问题举一个例子:
@Test
fun testNotsafeconcurrent() = runBlocking {
var count = 0
List(1000){
GlobalScope.launch { count++ }
}.joinAll()
println(count)
}
我们开启了一千个协程进行count++操作,按设计的原意应该是1000。但是,由于存在多个线程或协程试图同时访问和修改共享的资源,比如上次一个数据98进行了++,还没进行内存的数据修改(理应写入99),但这时一个新的协程已经开启,将这个数据进行++(还是得到98++),那上次数据的++将没有得到实现
二、协程并发安全解决
1.原子性操作(AtomicInteger):实现一个写入写出是一个原子性操作,不可再细分,这时就能保证每次赋值(++)顺利进行。(使用线程安全的数据结构:原子性)
2.协程的并发工具
以Mutex为例:
3.将内部并发问题转化为外部,这样就不存在并发问题(count转到了外部)