⛄一、SIFT配准简介
1 算法概述
在实时系统中,算法的输入为相机数据流,当前输入的图像与上一张相似度很高时应不参与融合,由于在体视显微镜下序列图像存在较大程度的偏移,所以融合前还需要进行图像配准,配准完成后再进行图像融合。算法流程图如图1所示。
图1 算法流程图
2 算法细节
2.1 图像配准
针对图像配准有基于灰度模板和特征点的算法。基于灰度模板的算法主要通过灰度匹配,使用误差函数来判断匹配程度;基于特征点的方法有SIFT,SURF和ORB等,此类方法基本思想是:首先找出图像中稳定的关键点,根据特征点给它一个向量用于描述,然后通过这个描述进行特征点的匹配,估计出图像的变换矩阵。然而,在显微图像融合的应用场景中有如下两个特殊之处:
-
由于光源是稳定的,