【ELM回归预测】引力搜索算法优化极限学习机GSA-ELM回归预测(含前后对比)【含Matlab源码 2205期】

这篇博客介绍了利用引力搜索算法(GSA)优化极限学习机(ELM)进行回归预测的方法。内容涵盖GSA算法原理,MATLAB源代码示例,以及运行结果展示。通过GSA调整ELM的权重和阈值,提高预测精度。文章还提供了MATLAB版本信息和相关参考文献。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、引力搜索算法简介

GSA是伊朗的克曼大学教授RASHEDI等于2009年提出的一种新型智能优化算法,算法灵感来源于粒子受万有引力的作用。它可以理解为众多的粒子向具有最大惯性质量的粒子不断靠近的过程。算法中,种群由惯性质量各不相同的粒子组成,每个粒子的位置对应问题的一个解,指引算法进行迭代优化的引力和惯性质量是由适应度函数值确定的。当种群中出现惯性质量大的粒子时,其他粒子都朝着惯性质量大的粒子运动,从而使算法收敛到最优解。

假设在n维搜索空间中有NP个粒子,则第i个粒子的位置表示为:
在这里插入图片描述
在第t次迭代时,种群中第j个粒子作用在第i个粒子上的引力表示为:
在这里插入图片描述
式中:Mi(t)和Mj(t)分别表示被作用粒子i和作用粒子j的惯性质量;Rij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值