⛄一、引力搜索算法简介
GSA是伊朗的克曼大学教授RASHEDI等于2009年提出的一种新型智能优化算法,算法灵感来源于粒子受万有引力的作用。它可以理解为众多的粒子向具有最大惯性质量的粒子不断靠近的过程。算法中,种群由惯性质量各不相同的粒子组成,每个粒子的位置对应问题的一个解,指引算法进行迭代优化的引力和惯性质量是由适应度函数值确定的。当种群中出现惯性质量大的粒子时,其他粒子都朝着惯性质量大的粒子运动,从而使算法收敛到最优解。
假设在n维搜索空间中有NP个粒子,则第i个粒子的位置表示为:
在第t次迭代时,种群中第j个粒子作用在第i个粒子上的引力表示为:
式中:Mi(t)和Mj(t)分别表示被作用粒子i和作用粒子j的惯性质量;Rij