【BP时间序列预测】EMD优化BP神经网络汇率预测【含Matlab源码 1742期】

本文介绍了经验模态分解(EMD)优化的BP神经网络在非线性、非平稳信号预测中的应用,特别是在汇率预测中的作用。通过EMD分解将非平稳信号转化为线性、平稳的分量,然后利用BPNN进行预测,提高了预测精度。文章提供了部分Matlab源码和运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、EMD优化BP神经网络简介

1 经验模态分解算法
基于经验模态分解(empirical mode decomposition, EMD)的分析方法较多运用于非线性、非平稳信号的分析。在短时交通流预测中,将非线性、非平稳的交通流信号转化为线性、平稳的交通流信号更能反映其物理意义。由于实质是通过特征时间尺度来识别交通流信号中所含的所有振动模态,与其他信号处理方法相比,经验模态分解方法具有直观、间接、自适应等特点。EMD分解方法基于以下假设条件:

  1. 数据至少有2个极值、1个最大值和1个最小值;若没有极值点,只有拐点,再对数据求1次或多次微分便可以得到极值。

  2. 极值点间的时间尺度唯一决定交通流信号随时间变化的趋势。

经EMD处理后的原始交通流信号可根据其自身特点自适应分解为有限个经验模态分量(IMF)和残余量(RES),使原始交通流信号不同时间尺度的局部特征信号包含在各个分量中,进而使非平稳数据平稳化。其中每个IMF须同时满足2个条件[17]:① 在整个时间范围内,函数具有相同数目的局部极值点和过零点,或两者最多相差1个;② 由局部最大值形成的上包络线和局部最小值形成的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值