⛄一、EMD优化BP神经网络简介
1 经验模态分解算法
基于经验模态分解(empirical mode decomposition, EMD)的分析方法较多运用于非线性、非平稳信号的分析。在短时交通流预测中,将非线性、非平稳的交通流信号转化为线性、平稳的交通流信号更能反映其物理意义。由于实质是通过特征时间尺度来识别交通流信号中所含的所有振动模态,与其他信号处理方法相比,经验模态分解方法具有直观、间接、自适应等特点。EMD分解方法基于以下假设条件:
-
数据至少有2个极值、1个最大值和1个最小值;若没有极值点,只有拐点,再对数据求1次或多次微分便可以得到极值。
-
极值点间的时间尺度唯一决定交通流信号随时间变化的趋势。
经EMD处理后的原始交通流信号可根据其自身特点自适应分解为有限个经验模态分量(IMF)和残余量(RES),使原始交通流信号不同时间尺度的局部特征信号包含在各个分量中,进而使非平稳数据平稳化。其中每个IMF须同时满足2个条件[17]:① 在整个时间范围内,函数具有相同数目的局部极值点和过零点,或两者最多相差1个;② 由局部最大值形成的上包络线和局部最小值形成的